A185734 Third accumulation array of the polygonal number array (A086270), by antidiagonals.
1, 6, 4, 21, 25, 10, 56, 90, 65, 20, 126, 245, 240, 135, 35, 252, 560, 665, 510, 245, 56, 462, 1134, 1540, 1435, 945, 406, 84, 792, 2100, 3150, 3360, 2695, 1596, 630, 120, 1287, 3630, 5880, 6930, 6370, 4606, 2520, 930, 165, 2002, 5940, 10230
Offset: 1
Examples
Northwest corner: 1....6......21.....56....126 4....25.....90....245....560 10...65....240....665...1540 20...135...510...1435...3360
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
f[n_,k_]:= k*(1+k)*(2+k)*n*(1+n)*(10+2*k-n+k*n)/144; TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* array A185733 *) Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* A185733 *) s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *) FullSimplify[s[n,k]] (* the formula for A185734 *) TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* array A185734 *) Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten (* A185734 *)
Formula
T(n,k) = C(k+3,4)*C(n+2,3)*(k*n-n+3*k+17)/20, k>=1, n>=1.
T(n,k) = Sum_{j=1..n} Sum_{l=1..k} A185733(j,l), by definition.
Comments