This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185738 #10 Jul 12 2017 03:18:30 %S A185738 1,2,3,3,4,7,4,5,8,15,5,6,9,16,31,6,7,10,17,32,63,7,8,11,18,33,64,127, %T A185738 8,9,12,19,34,65,128,255,9,10,13,20,35,66,129,256,511,10,11,14,21,36, %U A185738 67,130,257,512,1023,11,12,15,22,37,68,131,258,513,1024,2047,12,13,16,23,38,69,132,259,514,1025,2048,4095,13,14,17,24,39,70,133,260,515,1026,2049,4096,8191,14,15,18,25,40,71,134,261,516,1027,2050,4097,8192,16383 %N A185738 Rectangular array T(n,k) = 2^n + k - 2, by antidiagonals. %C A185738 This array fits in a chain: ...->(weight array)->A185738->(accumulation array->... %C A185738 See the Mathematica code and A144112. %H A185738 G. C. Greubel, <a href="/A185738/b185738.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A185738 T(n,k) = 2^n + k - 2, n>=1, k>=1. %e A185738 Northwest corner: %e A185738 1....2....3....4....5 %e A185738 3....4....5....6....7 %e A185738 7....8....9....10...11 %e A185738 15...16...17...18...19 %e A185738 31...32...33...34...35 %t A185738 (* This program prints the array T=A185738, the accumulation array A185739 of T, and the weight array A185740 of T. *) %t A185738 f[n_,0]:=0;f[0,k_]:=0; %t A185738 f[n_,k_]:=2^n+k-2; %t A185738 TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* Array A185738 *) %t A185738 Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten %t A185738 s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *) %t A185738 FullSimplify[s[n,k]] (* formula for accumulation array *) %t A185738 TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* Array A185739 *) %t A185738 Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten %t A185738 w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0]; %t A185738 TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* Array A185740 *) %t A185738 Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten %Y A185738 Cf. A144112, A185739, A185740. %K A185738 nonn,tabl %O A185738 1,2 %A A185738 _Clark Kimberling_, Feb 02 2011