A185778 Second weight array of Pascal's triangle (formatted as a rectangle), by antidiagonals.
1, -1, -1, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 1, 2, 1, 0, 0, 0, 0, 1, 3, 3, 1, 0, 0, 0, 0, 1, 4, 6, 4, 1, 0, 0, 0, 0, 1, 5, 10, 10, 5, 1, 0, 0, 0, 0, 1, 6, 15, 20, 15, 6, 1, 0, 0, 0, 0, 1, 7, 21, 35, 35, 21, 7, 1, 0, 0, 0, 0, 1, 8, 28, 56, 70, 56, 28, 8, 1, 0, 0, 0, 0, 1, 9, 36, 84, 126, 126, 84, 36, 9, 1, 0, 0
Offset: 1
Examples
Northwest corner: 1....-1....0....0....0....0....0,...0 -1....2....0....0....0....0....0....0 0.....0....0....1....1....1....1....1 0.....0....1....2....3....4....5....6 0.....0....1....3....6....10...15...21 0.....0....1....4....10...20...35...56
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
(* This code produces three arrays: A144225, A007318, A185778. *) f[n_,0]:=0;f[0,k_]:=0; (* Used to make the weight array *) f[1,1]:=1;f[n_,1]:=0;f[1,k_]:=0 f[n_,2]:=1;f[2,k_]:=1; f[n_,k_]:=-1+(n+k-4)!/((n-2)!*(k-2)!)/;k>1&&n>1; TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A144225 *) s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *) TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A007318, Pascal's triangle formatted as a rectangle *) w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0]; TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* A185778 *) Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
Formula
(See the Mathematica code.)
Comments