This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185783 #9 Jul 13 2017 03:07:44 %S A185783 1,6,3,20,20,6,50,70,44,10,105,180,160,80,15,196,385,420,300,130,21, %T A185783 336,728,910,800,500,196,28,540,1260,1736,1750,1350,770,280,36,825, %U A185783 2040,3024,3360,2975,2100,1120,384,45,1210,3135,4920,5880,5740,4655,3080,1560,510,55,1716,4620,7590,9600,10080,9016,6860,4320,2100,660,66,2366,6578,11220,14850,16500,15876,13328,9660,5850,2750,836,78 %N A185783 Second accumulation array of A185780, by antidiagonals. %C A185783 See A144112 and A185780. %H A185783 G. C. Greubel, <a href="/A185783/b185783.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A185783 T(n,k) = C(k+2,3)*C(n+1,2)*(k*n-n+2*k+4)/6, k>=1, n>=1. %e A185783 Northwest corner: %e A185783 1....6....20....50....105 %e A185783 3....20...70....180...385 %e A185783 6....44...160...420...910 %e A185783 10...80...300...800...1750 %t A185783 (See A185780.) %t A185783 f[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 1, 2]*(k*n - n + 2*k + 4)/6; Table[f[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* _G. C. Greubel_, Jul 12 2017 *) %Y A185783 Cf. A144112, A185780. %Y A185783 Row 1: A002415 (4-dimensional pyramidal numbers). %Y A185783 Columns 1 to 3: A000217, 2*A006503, 10*A005581. %K A185783 nonn,tabl %O A185783 1,2 %A A185783 _Clark Kimberling_, Feb 03 2011