This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185812 #21 Jul 15 2017 02:06:27 %S A185812 1,1,1,1,1,1,1,2,1,1,1,3,3,1,1,1,6,5,4,1,1,1,12,12,7,5,1,1,1,27,26,19, %T A185812 9,6,1,1,1,63,63,43,27,11,7,1,1,1,154,153,110,63,36,13,8,1,1,1,386, %U A185812 386,275,169,86,46,15,9,1,1 %N A185812 Riordan array ( 1/(1-x), x*A005043(x) ). %H A185812 G. C. Greubel, <a href="/A185812/b185812.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A185812 R(n,k) = k*Sum_{i=0..(n-k)} (Sum_{j=k..(n-i)} binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j))/(n-i), k>0. %F A185812 R(n,0)=1. %e A185812 Array begins: %e A185812 1; %e A185812 1, 1; %e A185812 1, 1, 1; %e A185812 1, 2, 1, 1; %e A185812 1, 3, 3, 1, 1; %e A185812 1, 6, 5, 4, 1, 1; %e A185812 1, 12, 12, 7, 5, 1, 1; %e A185812 1, 27, 26, 19, 9, 6, 1, 1; %p A185812 A185812 := proc(n,k) if n = k or k =0 then 1; else k*add(1/(n-i)*add(binomial(2*j-k-1,j-1) *(-1)^(n-j-i) *binomial(n-i,j),j=k..n-i),i=0..n-k) ; end if; end proc: %p A185812 seq(seq(A185812(n,k),k=0..n),n=0..15) ; # _R. J. Mathar_, Feb 10 2011 %t A185812 r[n_, k_] := k*Sum[Binomial[2*j - k - 1, j - 1]*(-1)^(n - j - i)*Binomial[n - i, j]/(n - i), {i, 0, n - k}, {j, k, n - i}]; r[n_, 0] = 1; Table[r[n, k], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Feb 21 2013 *) %Y A185812 Cf. A082395, apparently R(n,1), A097332 (row sums). - _R. J. Mathar_, Feb 10 2011 %K A185812 nonn,tabl %O A185812 0,8 %A A185812 _Vladimir Kruchinin_, Feb 05 2011