A185818 1/5 the number of n X 2 0..4 arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.
1, 9, 76, 656, 5680, 49248, 426928, 3701360, 32089696, 278208816, 2411993584, 20911320416, 181295389360, 1571781109104, 13626909445216, 118141552910384, 1024254735084784, 8880006538838880, 76987211704914352, 667457928119357552
Offset: 1
Keywords
Examples
Some solutions for 4 X 2 with a(1,1)=0: ..0..2....0..0....0..0....0..0....0..0....0..0....0..3....0..0....0..0....0..0 ..0..2....1..1....0..0....0..3....3..2....2..0....0..3....3..4....0..2....0..3 ..1..1....1..1....4..4....4..3....3..2....2..0....2..3....3..4....4..2....3..3 ..0..0....0..0....3..3....4..3....3..3....1..1....2..2....3..4....4..2....2..2
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
- Robert Israel, Maple-assisted proof of formula
Crossrefs
Cf. A185825.
Programs
-
Maple
f:= gfun:-rectoproc({a(n) = 7*a(n-1) + 15*a(n-2) - 32*a(n-4) - 64*a(n-5), a(1)=1, a(2)=9, a(3)=76, a(4)=656, a(5)=5680},a(n),remember): map(f, [$1..30]); # Robert Israel, Jul 23 2018
-
PARI
x='x+O('x^99); Vec(x*(1+2*x-2*x^2-11*x^3-20*x^4)/(1-7*x-15*x^2+32*x^4+64*x^5)) \\ Altug Alkan, Jul 23 2018
Formula
Empirical: a(n) = 7*a(n-1) + 15*a(n-2) - 32*a(n-4) - 64*a(n-5).
Empirical g.f.: x*(1 + 2*x - 2*x^2 - 11*x^3 - 20*x^4) / (1 - 7*x - 15*x^2 + 32*x^4 + 64*x^5). - Colin Barker, Apr 16 2018
Empirical formulas verified (see link). - Robert Israel, Jul 23 2018
Comments