cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185818 1/5 the number of n X 2 0..4 arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

1, 9, 76, 656, 5680, 49248, 426928, 3701360, 32089696, 278208816, 2411993584, 20911320416, 181295389360, 1571781109104, 13626909445216, 118141552910384, 1024254735084784, 8880006538838880, 76987211704914352, 667457928119357552
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2011

Keywords

Comments

Column 2 of A185825.

Examples

			Some solutions for 4 X 2 with a(1,1)=0:
..0..2....0..0....0..0....0..0....0..0....0..0....0..3....0..0....0..0....0..0
..0..2....1..1....0..0....0..3....3..2....2..0....0..3....3..4....0..2....0..3
..1..1....1..1....4..4....4..3....3..2....2..0....2..3....3..4....4..2....3..3
..0..0....0..0....3..3....4..3....3..3....1..1....2..2....3..4....4..2....2..2
		

Crossrefs

Cf. A185825.

Programs

  • Maple
    f:= gfun:-rectoproc({a(n) = 7*a(n-1) + 15*a(n-2) - 32*a(n-4) - 64*a(n-5), a(1)=1, a(2)=9, a(3)=76, a(4)=656, a(5)=5680},a(n),remember):
    map(f, [$1..30]); # Robert Israel, Jul 23 2018
  • PARI
    x='x+O('x^99); Vec(x*(1+2*x-2*x^2-11*x^3-20*x^4)/(1-7*x-15*x^2+32*x^4+64*x^5)) \\ Altug Alkan, Jul 23 2018

Formula

Empirical: a(n) = 7*a(n-1) + 15*a(n-2) - 32*a(n-4) - 64*a(n-5).
Empirical g.f.: x*(1 + 2*x - 2*x^2 - 11*x^3 - 20*x^4) / (1 - 7*x - 15*x^2 + 32*x^4 + 64*x^5). - Colin Barker, Apr 16 2018
Empirical formulas verified (see link). - Robert Israel, Jul 23 2018