cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185830 Half the number of n X 4 binary arrays with every element equal to exactly one or two of its horizontal and vertical neighbors.

Original entry on oeis.org

2, 23, 118, 514, 2398, 11789, 54223, 257050, 1213538, 5716561, 26960702, 127201987, 599792318, 2828918061, 13342117403, 62924057051, 296766436047, 1399631468891, 6601012746804, 31132105093032, 146827124366034, 692474808791206
Offset: 1

Views

Author

R. H. Hardin, Feb 05 2011

Keywords

Comments

Column 4 of A185835.

Examples

			Some solutions for 6 X 4 with a(1,1)=0:
  0 0 0 0    0 0 1 1    0 0 1 0    0 1 1 1    0 1 1 1
  0 1 1 1    1 0 1 0    1 1 1 0    0 1 0 0    0 1 0 0
  0 1 0 1    1 1 0 0    1 0 0 1    0 1 1 0    1 1 0 1
  0 1 0 1    0 0 1 1    0 1 1 1    1 0 1 0    1 0 0 1
  0 1 0 1    0 1 0 1    0 0 0 0    1 0 1 0    0 1 1 0
  0 0 1 1    0 1 0 1    1 1 1 0    1 1 1 0    0 1 1 0
		

Crossrefs

Cf. A185835.

Programs

  • Maple
    Configs:= remove(t -> min(nops({t[1],t[2],t[3],t[6]}), nops({t[2],t[3],t[4],t[7]}), nops({t[2],t[5],t[6],t[7]}), nops({t[3],t[6],t[7],t[8]}))=1,
    [seq(convert(2^8+i,base,2)[1..8],i=0..2^8-1)]):
    Compatible:= proc(i,j) local k;
    if Configs[i][5..8] <> Configs[j][1..4] or not member(numboccur(Configs[i][5], [Configs[i][1],Configs[i][6],Configs[j][5]]),{1,2})
       or not member(numboccur(Configs[i][6], [Configs[i][2],Configs[i][5],Configs[i][7],Configs[j][6]]),{1,2})
       or not member(numboccur(Configs[i][7], [Configs[i][3],Configs[i][6],Configs[i][8],Configs[j][7]]),{1,2})
       or not member(numboccur(Configs[i][8], [Configs[i][4],Configs[i][7],Configs[j][8]]),{1,2})
      then 0 else 1 fi;
    end proc:
    T:= Matrix(162,162,Compatible):
    u:= Vector(162,proc(i) if member(numboccur(Configs[i][1],[Configs[i][2],Configs[i][5]]),{1,2})
        and member(numboccur(Configs[i][2],[Configs[i][1],Configs[i][3],Configs[i][6]]),{1,2})
        and member(numboccur(Configs[i][3],[Configs[i][2],Configs[i][4],Configs[i][7]]),{1,2})
        and member(numboccur(Configs[i][4],[Configs[i][3],Configs[i][8]]),{1,2}) then 1 else 0 fi end proc) :
    v:= Vector(162,proc(i) if member(numboccur(Configs[i][5],[Configs[i][1],Configs[i][6]]),{1,2})
        and member(numboccur(Configs[i][6],[Configs[i][2],Configs[i][5],Configs[i][7]]),{1,2})
        and member(numboccur(Configs[i][7],[Configs[i][3],Configs[i][6],Configs[i][8]]),{1,2})
        and member(numboccur(Configs[i][8],[Configs[i][4],Configs[i][7]]),{1,2}) then 1 else 0 fi end proc) :
    Tv[0]:= v:
    for n from 1 to 50 do Tv[n]:= T . Tv[n-1] od:
    [2, seq(u^%T . Tv[n]/2,n=0..50)]; # Robert Israel, Aug 15 2018

Formula

Empirical: a(n) = 4*a(n-1) + 9*a(n-2) - 15*a(n-3) - 67*a(n-4) + 2*a(n-5) + 321*a(n-6) - 70*a(n-7) - 672*a(n-8) - 351*a(n-9) + 920*a(n-10) - 5077*a(n-11) + 733*a(n-12) + 28694*a(n-13) + 15849*a(n-14) - 28046*a(n-15) - 56805*a(n-16) + 89957*a(n-17) - 87270*a(n-18) + 85004*a(n-19) - 164885*a(n-20) + 188247*a(n-21) - 111655*a(n-22) + 89028*a(n-23) - 117971*a(n-24) + 115994*a(n-25) - 64896*a(n-26) + 52709*a(n-27) - 50206*a(n-28) + 31595*a(n-29) - 11233*a(n-30) + 1156*a(n-31) + 2585*a(n-32) - 5924*a(n-33) + 2841*a(n-34) - 817*a(n-35) + 361*a(n-36) - 42*a(n-37) - 6*a(n-38).
Empirical formula verified (see link). - Robert Israel, Aug 15 2018