This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185868 #18 Jun 18 2025 11:54:17 %S A185868 1,4,6,11,13,15,22,24,26,28,37,39,41,43,45,56,58,60,62,64,66,79,81,83, %T A185868 85,87,89,91,106,108,110,112,114,116,118,120,137,139,141,143,145,147, %U A185868 149,151,153,172,174,176,178,180,182,184,186,188,190,211,213,215,217,219,221,223,225,227,229,231,254,256,258,260,262,264,266,268,270,272,274,276,301,303,305,307,309,311,313,315,317,319,321,323,325,352,354,356,358,360,362,364,366,368,370,372,374,376,378 %N A185868 (Odd,odd)-polka dot array in the natural number array A000027, by antidiagonals. %C A185868 This is one of four polka dot arrays in the natural number array A000027: %C A185868 (odd,odd): A185868 %C A185868 (odd,even): A185869 %C A185868 (even,odd): A185870 %C A185868 (even,even): A185871 %C A185868 row 1: A084849 %C A185868 col 1: A000384 %C A185868 col 2: A091823 %C A185868 diag (1,13,...): A102083 %C A185868 diag (4,24,...): A085250 %C A185868 antidiagonal sums: A059722 %H A185868 G. C. Greubel, <a href="/A185868/b185868.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A185868 T(n,k) = 2*n-1+(n+k-2)*(2*n+2*k-3). %e A185868 The natural number array A000027 has northwest corner %e A185868 1...2...4...7...11 %e A185868 3...5...8...12..17 %e A185868 6...9...13..18..24 %e A185868 10..14..19..25..32 %e A185868 15..20..26..33..41 %e A185868 The numbers in (odd,odd) positions comprise A185868: %e A185868 1....4....11...22...37 %e A185868 6....13...24...39...58 %e A185868 15...26...41...60...83 %e A185868 28...43...62...85...112 %t A185868 f[n_,k_]:=2n-1+(n+k-2)(2n+2k-3); %t A185868 TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] %t A185868 Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten %o A185868 (Python) %o A185868 from math import isqrt, comb %o A185868 def A185868(n): %o A185868 a = (m:=isqrt(k:=n<<1))+(k>m*(m+1)) %o A185868 x = n-comb(a,2) %o A185868 y = a-x+1 %o A185868 return y*((y+(c:=x<<1)<<1)-7)+x*(c-5)+5 # _Chai Wah Wu_, Jun 18 2025 %Y A185868 Cf. A000027 (as an array), A185872, A185869, A185870, A185871. %K A185868 nonn,tabl %O A185868 1,2 %A A185868 _Clark Kimberling_, Feb 05 2011