cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185869 (Odd,even)-polka dot array in the natural number array A000027; read by antidiagonals.

Original entry on oeis.org

2, 7, 9, 16, 18, 20, 29, 31, 33, 35, 46, 48, 50, 52, 54, 67, 69, 71, 73, 75, 77, 92, 94, 96, 98, 100, 102, 104, 121, 123, 125, 127, 129, 131, 133, 135, 154, 156, 158, 160, 162, 164, 166, 168, 170, 191, 193, 195, 197, 199, 201, 203, 205, 207, 209, 232, 234, 236, 238, 240, 242, 244, 246, 248, 250, 252, 277, 279, 281, 283, 285, 287, 289, 291, 293, 295, 297, 299, 326, 328, 330, 332, 334, 336, 338, 340, 342, 344, 346, 348, 350, 379, 381, 383, 385, 387, 389, 391, 393, 395, 397, 399, 401, 403, 405
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

This is the second of four polka dot arrays; see A185868.
row 1: A130883;
row 2: A100037;
row 3: A100038;
row 4: A100039;
col 1: A014107;
col 2: A033537;
col 3: A100040;
col 4: A100041;
diag (2,18,...): A077591;
diag (7,31,...): A157914;
diag (16,48,...): A035008;
diag (29,69,...): A108928;
antidiagonal sums: A033431;
antidiagonal sums: 2*(1^3, 2^3, 3^3, 4^3,...) = 2*A000578.
A060432(n) + n is odd if and only if n is in this sequence. - Peter Kagey, Feb 03 2016

Examples

			Northwest corner:
  2....7....16...29...46
  9....18...31...48...69
  20...33...50...71...96
  35...52...73...98...127
		

Crossrefs

Cf. A000027 (as an array), A060432, A185868, A185870, A185871.

Programs

  • Haskell
    a185869 n = a185869_list !! (n - 1)
    a185869_list = scanl (+) 2 $ a' 1
      where  a' n = 2 * n + 3 : replicate n 2 ++ a' (n + 1)
    -- Peter Kagey, Sep 02 2016
    
  • Mathematica
    f[n_,k_]:=2n-1+(2n+2k-3)(n+k-1);
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]]
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
  • Python
    from math import isqrt, comb
    def A185869(n):
        a = (m:=isqrt(k:=n<<1))+(k>m*(m+1))
        x = n-comb(a,2)
        y = a-x+1
        return y*((y+(c:=x<<1)<<1)-5)+x*(c-3)+2 # Chai Wah Wu, Jun 18 2025

Formula

T(n,k) = 2n-1+(n+k-1)*(2n+2k-3), k>=1, n>=1.