A185870 (Even,odd)-polka dot array in the natural number array A000027, by antidiagonals.
3, 8, 10, 17, 19, 21, 30, 32, 34, 36, 47, 49, 51, 53, 55, 68, 70, 72, 74, 76, 78, 93, 95, 97, 99, 101, 103, 105, 122, 124, 126, 128, 130, 132, 134, 136, 155, 157, 159, 161, 163, 165, 167, 169, 171, 192, 194, 196, 198, 200, 202, 204, 206, 208, 210, 233, 235, 237, 239, 241, 243, 245, 247, 249, 251, 253, 278, 280, 282, 284, 286, 288, 290, 292, 294, 296, 298, 300, 327, 329, 331, 333, 335, 337, 339, 341, 343, 345, 347, 349, 351, 380, 382, 384, 386, 388, 390, 392, 394, 396, 398, 400, 402, 404, 406
Offset: 1
Examples
Northwest corner: 3....8....17...30...47 10...19...32...49...70 21...34...51...72...97 36...53...74...99...128
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
f[n_,k_]:=2n+(2n+2k-3)(n+k-1); TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
-
Python
from math import comb, isqrt def A185870(n): a = (m:=isqrt(k:=n<<1))+(k>m*(m+1)) x = n-comb(a,2) y = a-x+1 return y*((y+(c:=x<<1)<<1)-5)+x*(c-3)+3 # Chai Wah Wu, Jun 18 2025
Formula
T(n,k) = 2*n + (n+k-1)*(2*n+2*k-3), k>=1, n>=1.
Comments