A185872 Accumulation array of the (odd,odd)-polka dot array A185868, by antidiagonals.
1, 5, 7, 16, 24, 22, 38, 59, 65, 50, 75, 120, 141, 136, 95, 131, 215, 262, 274, 245, 161, 210, 352, 440, 480, 470, 400, 252, 316, 539, 687, 770, 790, 741, 609, 372, 453, 784, 1015, 1160, 1225, 1208, 1099, 880, 525, 625, 1095, 1436, 1666, 1795, 1825, 1750, 1556, 1221, 715, 836, 1480, 1962, 2304, 2520, 2616, 2590, 2432, 2124, 1640, 946, 1090, 1947, 2605, 3090, 3420, 3605, 3647, 3540
Offset: 1
Examples
Northwest corner: 1, 5, 16, 38, 75 7, 24, 59, 120, 215 22, 54, 141, 262, 440 50, 136, 174, 480, 770
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
f[n_,k_]:=2n-1+(2n+2k-4)(2n+2k-3)/2; TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185868 *) Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *) FullSimplify[s[n,k]] (*formula for A185872 *) g[n_]:=Sum[f[n+1-k,k],{k,1,n}]; Table[g[n],{n,50}] (* A185872 *) TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]
Formula
T(n,k) = (k*n/6)*(4*n^2 + 6*n*k + 4*k^2 - 3*n - 9*k + 4), k>=1, n>=1.
Comments