cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A185872 Accumulation array of the (odd,odd)-polka dot array A185868, by antidiagonals.

Original entry on oeis.org

1, 5, 7, 16, 24, 22, 38, 59, 65, 50, 75, 120, 141, 136, 95, 131, 215, 262, 274, 245, 161, 210, 352, 440, 480, 470, 400, 252, 316, 539, 687, 770, 790, 741, 609, 372, 453, 784, 1015, 1160, 1225, 1208, 1099, 880, 525, 625, 1095, 1436, 1666, 1795, 1825, 1750, 1556, 1221, 715, 836, 1480, 1962, 2304, 2520, 2616, 2590, 2432, 2124, 1640, 946, 1090, 1947, 2605, 3090, 3420, 3605, 3647, 3540
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2011

Keywords

Comments

See A144112 for the definition of accumulation array.

Examples

			Northwest corner:
   1,   5,  16,  38,  75
   7,  24,  59, 120, 215
  22,  54, 141, 262, 440
  50, 136, 174, 480, 770
		

Crossrefs

Cf. A185868.
Row 1: A174723; column 1: A002412.

Programs

  • Mathematica
    f[n_,k_]:=2n-1+(2n+2k-4)(2n+2k-3)/2;
    TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185868 *)
    Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
    s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *)
    FullSimplify[s[n,k]] (*formula for A185872 *)
    g[n_]:=Sum[f[n+1-k,k],{k,1,n}];
    Table[g[n],{n,50}] (* A185872 *)
    TableForm[Table[s[n,k],{n,1,10},{k,1,15}]]

Formula

T(n,k) = (k*n/6)*(4*n^2 + 6*n*k + 4*k^2 - 3*n - 9*k + 4), k>=1, n>=1.