A185875 Third accumulation array of A051340, by antidiagonals.
1, 4, 5, 10, 19, 15, 20, 46, 55, 35, 35, 90, 130, 125, 70, 56, 155, 250, 290, 245, 126, 84, 245, 425, 550, 560, 434, 210, 120, 364, 665, 925, 1050, 980, 714, 330, 165, 516, 980, 1435, 1750, 1820, 1596, 1110, 495, 220, 705, 1380, 2100, 2695, 3010, 2940, 2460, 1650, 715, 286, 935, 1875, 2940, 3920, 4606, 4830, 4500, 3630, 2365, 1001, 364, 1210, 2475, 3975, 5460, 6664, 7350, 7350, 6600, 5170
Offset: 1
Examples
Northwest corner: 1, 4, 10, 20, 35 5, 19, 46, 90, 155 15, 55, 130, 250, 425 35, 125, 290, 550, 925
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 24.
Programs
-
Mathematica
f[n_,k_]:= k*(1+k)*n*(1+n)*(2+n)*(5+4*k+3*n)/144; TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
Formula
T(n,k) = (3*n+4*k+5)*C(k,2)*C(n,3)/12, k>=1, n>=1.
Comments