A185876 Fourth accumulation array of A051340, by antidiagonals.
1, 5, 6, 15, 29, 21, 35, 85, 99, 56, 70, 195, 285, 259, 126, 126, 385, 645, 735, 574, 252, 210, 686, 1260, 1645, 1610, 1134, 462, 330, 1134, 2226, 3185, 3570, 3150, 2058, 792, 495, 1770, 3654, 5586, 6860, 6930, 5670, 3498, 1287, 715, 2640, 5670, 9114, 11956, 13230, 12390, 9570, 5643, 2002, 1001, 3795, 8415, 14070
Offset: 1
Examples
Northwest corner: 1, 5, 15, 35, 70 6, 29, 85, 195, 385 21, 99, 285, 645, 1260 56, 259, 735, 1645, 3185
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
- Johann Cigler, Some elementary observations on Narayana polynomials and related topics, arXiv:1611.05252 [math.CO], 2016. See p. 24.
Programs
-
Mathematica
f[n_,k_]:=k(1+k)n(1+n)(2+n)(5+4k+3n)/144; TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A185875 *) Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *) Factor[s[n,k]] (* formula for A185876 *) TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185876 *) Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
Formula
T(n,k) = (4*n+5*k+11)*C(k+2,3)*C(n+4,4)/20, k>=1, n>=1.
Comments