This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185878 #12 Jul 21 2017 03:15:02 %S A185878 1,4,2,11,10,3,24,28,18,4,45,60,51,28,5,76,110,108,80,40,6,119,182, %T A185878 195,168,115,54,7,176,280,318,300,240,156,70,8,249,408,483,484,425, %U A185878 324,203,88,9,340,570,696,728,680,570,420,256,108,10,451,770,963,1040,1015,906,735,528,315,130,11,584,1012,1290,1428,1440,1344,1162,920,648,380,154,12 %N A185878 Accumulation array of A185877, by antidiagonals. %C A185878 A member of the accumulation chain ... < A185879 < A185877 < A185878 < A185880 < ... %C A185878 See A144112 for the definition of accumulation array. %H A185878 G. C. Greubel, <a href="/A185878/b185878.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A185878 T(n,k) = k*n*(2*k^2 -3*k +3*k*n -3*n +7)/6, k>=1, n>=1. %e A185878 Northwest corner: %e A185878 1, 4, 11, 24, 45, ... %e A185878 2, 10, 28, 60, 110, ... %e A185878 3, 18, 51, 108, 195, ... %e A185878 4, 28, 80, 168, 300, ... %e A185878 ... %t A185878 f[n_, k_] := k*n*(2*k^2 - 3*k + 3*k*n - 3*n + 7)/6; Table[f[n - k + 1, k], {n,10}, {k, n, 1, -1}] // Flatten (* _G. C. Greubel_, Jul 21 2017 *) %Y A185878 Cf. A144112, A185877, A185879. %Y A185878 Row 1 to 3: A006527, A006331, A064043. %Y A185878 Column 1 to 5: A000027, A028552, A140677, 12*A000096, 5*A130861. %K A185878 nonn,tabl %O A185878 1,2 %A A185878 _Clark Kimberling_, Feb 05 2011