This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185904 #14 Jul 22 2017 09:14:18 %S A185904 1,4,4,10,16,10,20,40,40,20,35,80,100,80,35,56,140,200,200,140,56,84, %T A185904 224,350,400,350,224,84,120,336,560,700,700,560,336,120,165,480,840, %U A185904 1120,1225,1120,840,480,165,220,660,1200,1680,1960,1960,1680,1200,660,220,286,880,1650,2400,2940,3136,2940,2400,1650,880,286,364,1144,2200,3300,4200,4704,4704,4200,3300,2200,1144,364,455,1456,2860,4400,5775,6720,7056,6720,5775,4400,2860,1456,455,560,1820,3640,5720,7700,9240,10080,10080,9240,7700,5720,3640,1820,560 %N A185904 Multiplication table for the tetrahedral numbers (A000292), by antidiagonals. %C A185904 A member of the accumulation chain ... < A185906 < A000007 < A003991 < A098358 < A185904 < A185905 < ... (See A144112 for the definition of accumulation array.) %H A185904 G. C. Greubel, <a href="/A185904/b185904.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A185904 T(n,k) = binomial(k+2,3)*binomial(n+2,3), k >= 1, n >= 1. %e A185904 Northwest corner: %e A185904 1, 4, 10, 20, 35 %e A185904 4, 16, 40, 80, 140 %e A185904 10, 40, 100, 200, 350 %e A185904 20, 80, 200, 400, 700 %t A185904 (* This program generates A098358 and its accumulation array, A185904. *) %t A185904 TableForm[Table[f[n,k],{n,1,10},{k,1,15}]] (* A098358 *) %t A185904 Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten %t A185904 s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; (* accumulation array of {f(n,k)} *) %t A185904 FullSimplify[s[n,k]] (* formula for A185904 *) %t A185904 TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A185904 *) %t A185904 Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten %t A185904 T[n_, k_] := Binomial[k + 2, 3]*Binomial[n + 2, 3]; Table[T[n - k + 1, k], {n, 10}, {k, n, 1, -1}] // Flatten (* _G. C. Greubel_, Jul 22 2017 *) %Y A185904 Cf. A000007, A003991, A098358, A144112, A185905, A185906, A185907. %Y A185904 Row 1 = Column 1 = A000292. %K A185904 nonn,tabl %O A185904 1,2 %A A185904 _Clark Kimberling_, Feb 06 2011