A185914
Array: T(n,k)=k-n+1 for k>=n; T(n,k)=0 for k
1, 2, 0, 3, 1, 0, 4, 2, 0, 0, 5, 3, 1, 0, 0, 6, 4, 2, 0, 0, 0, 7, 5, 3, 1, 0, 0, 0, 8, 6, 4, 2, 0, 0, 0, 0, 9, 7, 5, 3, 1, 0, 0, 0, 0, 10, 8, 6, 4, 2, 0, 0, 0, 0, 0, 11, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0, 12, 10, 8, 6, 4, 2, 0, 0, 0, 0, 0, 0, 13, 11, 9, 7, 5, 3, 1, 0, 0, 0, 0, 0, 0, 14, 12, 10, 8, 6, 4, 2, 0, 0, 0, 0, 0, 0, 0
Offset: 1
Examples
Northwest corner: 1...2...3...4...5...6...7...8...9 0...1...2...3...4...5...6...7...8 0...0...1...2...3...4...5...6...7 0...0...0...1...2...3...4...5...6 0...0...0...0...1...2...3...4...5
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
(* This program generates the array A185914, its accumulation array A185915, and its weight array A185916. *) f[n_,0]:=0;f[0,k_]:=0; (* needed for the weight array *) f[n_,k_]:=k-n+1; f[n_,k_]:=0/;k
A185914 *) Table[f[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten s[n_,k_]:=Sum[f[i,j],{i,1,n},{j,1,k}]; TableForm[Table[s[n,k],{n,1,10},{k,1,15}]] (* A184915 *) Table[s[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten w[m_,n_]:=f[m,n]+f[m-1,n-1]-f[m,n-1]-f[m-1,n]/;Or[m>0,n>0]; TableForm[Table[w[n,k],{n,1,10},{k,1,15}]] (* A184916 *) Table[w[n-k+1,k],{n,14},{k,n,1,-1}]//Flatten
Formula
T(n,k) = k-n+1 for k>=n; T(n,k)=0 for k=1, n>=1.
Comments