A185915 Accumulation array of A185914, by antidiagonals.
1, 3, 1, 6, 4, 1, 10, 9, 4, 1, 15, 16, 10, 4, 1, 21, 25, 19, 10, 4, 1, 28, 36, 31, 20, 10, 4, 1, 36, 49, 46, 34, 20, 10, 4, 1, 45, 64, 64, 52, 35, 20, 10, 4, 1, 55, 81, 85, 74, 55, 35, 20, 10, 4, 1, 66, 100, 109, 100, 80, 56, 35, 20, 10, 4, 1, 78, 121, 136, 130, 110, 83, 56, 35, 20, 10, 4, 1, 91, 144, 166, 164, 145, 116, 84, 56, 35, 20, 10, 4, 1, 105, 169, 199, 202, 185, 155, 119, 84, 56, 35, 20, 10, 4, 1
Offset: 1
Examples
Northwest corner: 1....3....6....10....15....21....28 1....4....9....16....25....36....49 1....4....10...19....31....46....64 1....4....10...20....34....52....74 1....4....10...20....35....55....80 1....4....10...20....35....56....83 row 1: A000217 (triangular numbers) row 2: A000290 (squares) row 3: A005448 (centered triangular numbers) row 4: A005893 row 5: A062985 Limit of rows: A000292 (tetrahedral numbers)
Links
- G. C. Greubel, Table of n, a(n) for the first 50 rows, flattened
Programs
-
Mathematica
f[n_, 0] := 0; f[0, k_] := 0; f[n_, k_] := k - n + 1; f[n_, k_] := 0 /; k < n; s[n_, k_] := Sum[f[i, j], {i, 1, n}, {j, 1, k}]; Table[s[n - k + 1, k], {n, 50}, {k, n, 1, -1}] // Flatten
Formula
T(n,k) = C(k+2,3) if k<=n; T(n,k) = k*(k+2-n)/2 if k>n; k>=1, n>=1.
Comments