This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185918 #37 Sep 08 2022 08:45:55 %S A185918 -1,9,43,101,183,289,419,573,751,953,1179,1429,1703,2001,2323,2669, %T A185918 3039,3433,3851,4293,4759,5249,5763,6301,6863,7449,8059,8693,9351, %U A185918 10033,10739,11469,12223,13001,13803,14629,15479,16353,17251,18173,19119,20089,21083,22101,23143,24209 %N A185918 a(n) = 12*n^2 - 2*n - 1. %C A185918 The second quadrisection of A184005(n-1) is A179741(n). %C A185918 The first quadrisection of A184005(n-1) is a(n). %C A185918 Sequence found by reading the line from -1, in the direction -1, 9, ..., in the square spiral whose vertices are -1 together with the generalized octagonal numbers A001082. - _Omar E. Pol_, Jul 18 2012 %H A185918 G. C. Greubel, <a href="/A185918/b185918.txt">Table of n, a(n) for n = 0..5000</a> %H A185918 <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (3,-3,1). %F A185918 a(n) = A184005(4*n-1). [corrected by _R. J. Mathar_, Aug 24 2011] %F A185918 a(n) = a(n-1) + 24*n - 14. %F A185918 a(n) = 2*a(n-1) - a(n) + 24. %F A185918 a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). %F A185918 G.f.: -(1+x)*(13*x-1) / (x-1)^3. - _R. J. Mathar_, Aug 24 2011 %F A185918 a(n) = A154106(n-1) - 2, n >= 1. - _Omar E. Pol_, Jul 19 2012 %F A185918 E.g.f.: (12*x^2 + 10*x -1)*exp(x). - _G. C. Greubel_, Jul 22 2017 %p A185918 A185918:=n->12*n^2-2*n-1: seq(A185918(n), n=0..60); # _Wesley Ivan Hurt_, Jan 31 2017 %t A185918 Table[12n^2-2n-1,{n,0,50}] (* or *) LinearRecurrence[{3,-3,1},{-1,9,43},50] (* _Harvey P. Dale_, May 20 2012 *) %o A185918 (Magma) [-1-2*n+12*n^2: n in [0..80] ]; // _Vincenzo Librandi_, Feb 09 2011 %o A185918 (PARI) a(n)=12*n^2-2*n-1 \\ _Charles R Greathouse IV_, Dec 21 2011 %Y A185918 Cf. A001082, A154106, A179741, A184005. %K A185918 sign,easy %O A185918 0,2 %A A185918 _Paul Curtz_, Feb 08 2011 %E A185918 More terms from _Vincenzo Librandi_, Feb 09 2011