This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185943 #30 Mar 07 2020 14:54:45 %S A185943 1,2,1,3,3,1,4,7,4,1,5,16,12,5,1,6,39,34,18,6,1,7,104,98,59,25,7,1,8, %T A185943 301,294,190,92,33,8,1,9,927,919,618,324,134,42,9,1,10,2983,2974,2047, %U A185943 1128,510,186,52,10,1,11,9901,9891,6908,3934,1887,759,249,63,11,1 %N A185943 Riordan array ((1/(1-x))^m, x*A000108(x)), m = 2. %H A185943 G. C. Greubel, <a href="/A185943/b185943.txt">Table of n, a(n) for the first 50 rows, flattened</a> %F A185943 R(n,k,m) = k*Sum_{i=0..n-k} binomial(i+m-1, m-1)*binomial(2*(n-i)-k-1, n-i-1)/(n-i), m = 2, k > 0. %F A185943 R(n,0,2) = n + 1. %F A185943 Conjecture: R(n,1,2) = A014140(n-1). R(n,2,2) = A014143(n-2). - _R. J. Mathar_, Feb 11 2011 %e A185943 Array begins %e A185943 1; %e A185943 2, 1; %e A185943 3, 3, 1; %e A185943 4, 7, 4, 1; %e A185943 5, 16, 12, 5, 1; %e A185943 6, 39, 34, 18, 6, 1; %e A185943 7, 104, 98, 59, 25, 7, 1; %e A185943 8, 301, 294, 190, 92, 33, 8, 1; %e A185943 Production matrix begins: %e A185943 2, 1; %e A185943 -1, 1, 1; %e A185943 1, 1, 1, 1; %e A185943 0, 1, 1, 1, 1; %e A185943 0, 1, 1, 1, 1, 1; %e A185943 0, 1, 1, 1, 1, 1, 1; %e A185943 0, 1, 1, 1, 1, 1, 1, 1; %e A185943 0, 1, 1, 1, 1, 1, 1, 1, 1; %e A185943 ... _Philippe Deléham_, Sep 20 2014 %t A185943 r[n_, k_, m_] := k*Sum[ Binomial[i + m - 1, m - 1]*Binomial[2*(n - i) - k - 1, n - i - 1]/(n - i), {i, 0, n - k}]; r[n_, 0, 2] := n + 1; Table[r[n, k, 2], {n, 0, 10}, {k, 0, n}] // Flatten (* _Jean-François Alcover_, Dec 13 2012, from formula *) %o A185943 (Sage) %o A185943 @CachedFunction %o A185943 def A(n, k): %o A185943 if n==k: return n+1 %o A185943 return add(A(n-1, j) for j in (0..k)) %o A185943 A185943 = lambda n,k: A(n, n-k) %o A185943 for n in (0..7) : %o A185943 print([A185943(n, k) for k in (0..n)]) # _Peter Luschny_, Nov 14 2012 %Y A185943 Cf. A091491 (m=1), A185944 (m=3), A185945 (m=4). %Y A185943 Row sums A014140. Cf. A000108, A014143. %K A185943 nonn,tabl %O A185943 0,2 %A A185943 _Vladimir Kruchinin_, Feb 07 2011