This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185957 #13 Jul 23 2017 22:03:49 %S A185957 1,3,3,6,10,6,10,21,21,10,15,36,46,36,15,21,55,81,81,55,21,28,78,126, %T A185957 146,126,78,28,36,105,181,231,231,181,105,36,45,136,246,336,371,336, %U A185957 246,136,45,55,171,321,461,546,546,461,321,171,55,66,210,406,606,756,812,756 %N A185957 Second accumulation array of the array min{n,k}, by antidiagonals. %C A185957 A member of the accumulation chain %C A185957 ... < A003982 < A003783 < A115262 < A185957 <..., %C A185957 where A003783(n,k)=min{n,k}. See A144112 for the definition of accumulation array. %C A185957 A185957 also gives the symmetric matrix based on the triangular numbers s=(1,3,6,10,15,....; viz, let T be the infinite square matrix whose n-th row is formed by putting n-1 zeros before the terms of s. Let T' be the transpose of T. Then A185957 represents the matrix product M=T'*T. M is the self-fusion matrix of s, as defined at A193722. See A202678 for characteristic polynomials of principal submatrices of M. %H A185957 G. C. Greubel, <a href="/A185957/b185957.txt">Table of n, a(n) for the first 50 rows, flattened</a> %e A185957 Northwest corner: %e A185957 1....3....6....10...15 %e A185957 3....10...21...36...55 %e A185957 6....21...46...81...126 %e A185957 10...36...81...146..231 %t A185957 U = NestList[Most[Prepend[#, 0]] &, #, Length[#] - 1] &[Table[k (k + 1)/2, {k, 1, 15}]]; %t A185957 L = Transpose[U]; M = L.U; TableForm[M] %t A185957 m[i_, j_] := M[[i]][[j]]; %t A185957 Flatten[Table[m[i, n + 1 - i], {n, 1, 12}, {i, 1, n}]] %t A185957 f[n_] := Sum[m[i, n], {i, 1, n}] + Sum[m[n, j], {j, 1, n - 1}] %t A185957 Table[f[n], {n, 1, 12}] %t A185957 Table[Sqrt[f[n]], {n, 1, 12}] (* A000292 *) %t A185957 Table[m[1, j], {j, 1, 12}] (* A000217 *) %t A185957 Table[m[2, j], {j, 1, 12}] (* A014105 *) %t A185957 Table[m[j, j], {j, 1, 12}] (* A024166 *) %t A185957 Table[m[j, j + 1], {j, 1, 12}] (* A112851 *) %t A185957 Table[Sum[m[i, n + 1 - i], {i, 1, n}], {n, 1, 12}] (* A001769 *) %Y A185957 Cf. A144112, A003783, A115262. %K A185957 nonn,tabl %O A185957 1,2 %A A185957 _Clark Kimberling_, Feb 07 2011