This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A185965 #7 Dec 03 2014 12:28:28 %S A185965 1,-2,0,8,-10,-30,98,40,-648,680,3058,-8712,-6760,65674,-52710, %T A185965 -348128,856358,1011330,-7116754,3891920,41214978,-87043088, %U A185965 -143941360,793389048,-224365750,-4961373872,8914590594,19893652520,-89559777800,540262170,601349934194,-905363401312,-2693832315240,10150582469480,2943320005570,-73015796693016,89846661676688 %N A185965 Central coefficients of number triangle A185962. %F A185965 a(n)=A185962(2n,n); a(n)=sum{i=0..2n+2, C(2n+2,i)*sum{C(n+j,j)*C(j,n-i-j)*(-1)^(n-j)}}. %F A185965 Conjecture: 15*n*(n-1)*a(n) +10*(2*n-1)*(n-1)*a(n-1) +(109*n^2-263*n+180)*a(n-2) +4*(-2*n^2-10*n+57)*a(n-3) +60*(n-4)^2*a(n-4) -6*(2*n-7)*(n-5)*a(n-5)=0. - _R. J. Mathar_, Dec 03 2014 %F A185965 Conjecture: 3*n*(n-1)*(57*n-136)*a(n) +(n-1)*(171*n^2-415*n+14)*a(n-1) +2*(532*n^3-2281*n^2+2755*n-840)*a(n-2) -2*(n-3)*(304*n^2-835*n+216)*a(n-3) +2*(19*n-5)*(n-4)*(2*n-5)*a(n-4)=0. - _R. J. Mathar_, Dec 03 2014 %K A185965 sign,easy %O A185965 0,2 %A A185965 _Paul Barry_, Feb 07 2011