A185996 Coefficient array of orthogonal polynomials P(n,x)=(x-2n+2)*P(n-1,x)-(2n-3)*P(n-2,x), P(0,x)=1, P(1,x)=x-1.
1, -1, 1, 1, -3, 1, -1, 10, -7, 1, 1, -46, 47, -13, 1, -1, 299, -373, 144, -21, 1, 1, -2577, 3606, -1696, 345, -31, 1, -1, 27636, -41746, 22374, -5605, 706, -43, 1, 1, -353404, 565202, -332934, 96359, -15086, 1295, -57, 1, -1, 5239925, -8770446, 5556536, -1790603, 327145, -35161, 2192, -73, 1, 1, -88310783, 153499519, -103128216, 36149287, -7422751, 938028, -73648, 3489, -91, 1
Offset: 0
Examples
Triangle begins 1, -1, 1, 1, -3, 1, -1, 10, -7, 1, 1, -46, 47, -13, 1, -1, 299, -373, 144, -21, 1, 1, -2577, 3606, -1696, 345, -31, 1, -1, 27636, -41746, 22374, -5605, 706, -43, 1, 1, -353404, 565202, -332934, 96359, -15086, 1295, -57, 1, -1, 5239925, -8770446, 5556536, -1790603, 327145, -35161, 2192, -73, 1 Production matrix of inverse begins 1, 1, 1, 2, 1, 0, 3, 4, 1, 0, 0, 5, 6, 1, 0, 0, 0, 7, 8, 1, 0, 0, 0, 0, 9, 10, 1, 0, 0, 0, 0, 0, 11, 12, 1, 0, 0, 0, 0, 0, 0, 13, 14, 1, 0, 0, 0, 0, 0, 0, 0, 15, 16, 1
Links
- E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.