cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186000 Consider the list s(1), s(2), ... of numbers that are products of exactly n primes; a(n) is the smallest s(j) whose decimal expansion ends in j.

This page as a plain text file.
%I A186000 #34 Aug 24 2025 05:50:18
%S A186000 1,17,291,12,56,78645,1350,192,896,7936,36096,3072,14336,250880,
%T A186000 1247232,49152,229376,4014080,6718464,786432,3670016,64225280,
%U A186000 45203456000,12582912,58720256,622854144,219792015360,201326592,939524096,8321499136,37849399296,3221225472,15032385536,263066746880,2924872728576,51539607552,240518168576,4209067950080,7044820107264,824633720832,3848290697216
%N A186000 Consider the list s(1), s(2), ... of numbers that are products of exactly n primes; a(n) is the smallest s(j) whose decimal expansion ends in j.
%C A186000 For n = 0, 1, 2, ..., the index j corresponding to a(n) is 1, 7, 91, 2, 6, 8645, 50, 2, 6, 36, 96, 2, 6, 80, 232, 2, 6, 80, 64, 2, 6, 80, >6136, 2, 6, 44, > 564, 2, 6, 36, 96, 2, 6, 80, >286, 2, 6, 80, 64, 2, 6, ..., .
%H A186000 <a href="/index/Ar#automorphic">Index entries for sequences related to automorphic numbers</a>
%e A186000 a(0) = 1 because 1 is the first and only positive integer (A000027) which is not a prime, a semiprime, a triprime, etc.;
%e A186000 a(1) = 17 because 17 is the seventh term of A000040 (it is also the first term of A046883);
%e A186000 a(2) = 291 because 291 is the 91st term of A001358;
%e A186000 a(3) = 12 because 12 is the second term of A014612;
%e A186000 a(4) = 56 because 56 is the sixth term of A014613; etc.
%t A186000 nextKthAlmostPrime[n_, k_] := Block[{m = n + 1}, While[ Plus @@ Last /@ FactorInteger@ m != k, m++]; m] (* _Eric W. Weisstein_, Feb 07 2006 *); f[n_] := Block[{c = 1, kp = 2^n}, While[ Mod[kp, 10^Floor[1 + Log10@ c]] != c, c++; kp = nextKthAlmostPrime[kp, n]]; kp]
%t A186000 (* These terms can be crosschecked by: *)
%t A186000 AlmostPrimePi[k_Integer, n_] := Module[{a, i}, a[0] = 1; If[k == 1, PrimePi[n], Sum[PrimePi[n/Times @@ Prime[Array[a, k - 1]]] - a[k - 1] + 1, Evaluate[ Sequence @@ Table[{a[i], a[i - 1], PrimePi[(n/Times @@ Prime[Array[a, i - 1]])^(1/(k - i + 1))]}, {i, k - 1}]]]]] (* _Eric W. Weisstein_, Feb 07 2006 *)
%Y A186000 Cf. A000040, A001358, A046883, A014612, A014613, A078840, A185999.
%K A186000 nonn,base,changed
%O A186000 0,2
%A A186000 _Jonathan Vos Post_ and _Robert G. Wilson v_, Feb 24 2011
%E A186000 Edited by _N. J. A. Sloane_, Mar 04 2011
%E A186000 The missing values, a(22), a(26) & a(34), were supplied to me via email dtd Mar 03 2011 from _Donovan Johnson_. - _Robert G. Wilson v_, Mar 22 2011