This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186005 #16 Jul 25 2017 02:28:16 %S A186005 1,3,2,4,6,5,7,8,12,11,9,13,15,22,21,10,16,23,26,37,36,14,18,27,38,42, %T A186005 58,57,17,24,30,43,59,64,86,85,19,28,39,47,65,87,93,122,121,20,31,44, %U A186005 60,70,94,123,130,167,166,25,33,48,66,88,100,131,168,176,222,221,29,40,51,71,95,124,138,177,223,232,288,287 %N A186005 Distance array associated with ordering A057557 of N X N X N by antidiagonals (distances to xy plane). %C A186005 Let n=n(i,j,k) be the position of (i,j,k) in the lexicographic ordering A057557 of N X N X N, where N={1,2,3,...}. Row h of A186005 lists those n for which k=n, the distance from (i,j,k) to the xy-plane. Every positive integer occurs exactly once in the array, so that as a sequence, A186005 is a permutation of the positive integers. %H A186005 G. C. Greubel, <a href="/A186005/b186005.txt">Table of n, a(n) for the first 50 rows, flattened</a> %e A186005 T(2,2)=6, the position of (1,2,2) in the ordering %e A186005 (1,1,1) < (1,1,2) < (1,2,1) < (2,1,1) < (1,1,3) < (1,2,2) < (1,3,1) < ... %e A186005 Northwest corner: %e A186005 1, 3, 4, 7, 9, 10 %e A186005 2, 6, 8, 13, 16, 18 %e A186005 5, 12, 15, 23, 27, 30 %e A186005 11, 22, 26, 38, 43, 47 %e A186005 21, 37, 42, 59, 65, 70 %t A186005 lexicographicLattice[{dim_,maxHeight_}]:=Flatten[Array[Sort@Flatten[(Permutations[#1]&)/@IntegerPartitions[#1+dim-1,{dim}],1]&,maxHeight],1]; %t A186005 lexicographicLatticeHeightArray[{dim_,maxHeight_,axis_}]:=Array[Flatten@Position[Map[#[[axis]]&,lexicographicLattice[{dim,maxHeight}]],#]&,maxHeight]; %t A186005 llha=lexicographicLatticeHeightArray[{3,12,3}]; %t A186005 ordering=lexicographicLattice[{2,Length[llha]}]; %t A186005 llha[[#1,#2]]&@@#1&/@ordering %t A186005 (* _Peter J. C. Moses_, Feb 15 2011 *) %Y A186005 Cf. A057557, A186003, A186004. %K A186005 nonn,tabl %O A186005 1,2 %A A186005 _Clark Kimberling_, Feb 10 2011