This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186021 #95 Apr 10 2025 02:46:25 %S A186021 1,2,4,10,30,104,406,1754,8280,42294,231950,1357140,8427194,55288874, %T A186021 381798644,2765917090,20960284294,165729739608,1364153612318, %U A186021 11665484410114,103448316470744,949739632313502,9013431476894646,88304011710168692,891917738589610578,9277180664459998706 %N A186021 a(n) = Bell(n)*(2 - 0^n). %C A186021 a(n) is the number of collections of subsets of {1,2,...,n-1} that are pairwise disjoint. a(n+1) = 2*Sum_{j=0..n} C(n,j)*Bell(j). For example a(3)=10 because we have: {}, {{}}, {{1}}, {{2}}, {{1,2}}, {{},{1}}, {{},{2}}, {{},{1,2}}, {{1},{2}}, {{},{1},{2}}. - _Geoffrey Critzer_, Aug 28 2014 %C A186021 a(n) is the number of collections of subsets of [n] that are pairwise disjoint and cover [n], with [0] = {}. For disjoint collections of nonempty subsets see A000110. For arbitrary collections of subsets see A000371. For arbitrary collections of nonempty subsets see A003465. - _Manfred Boergens_, May 02 2024 and Apr 09 2025 %H A186021 G. C. Greubel, <a href="/A186021/b186021.txt">Table of n, a(n) for n = 0..575</a> %F A186021 E.g.f.: 2*exp(exp(x)-1)-1. - _Paul Barry_, Apr 06 2011 %F A186021 a(n) = A000110(n)*A040000(n). %F A186021 a(n+1) = 1 + Sum_{k=0..n} C(n,k)*a(k). - _Franklin T. Adams-Watters_, Oct 02 2011 %F A186021 From _Sergei N. Gladkovskii_, Nov 11 2012 to Mar 29 2013: (Start) %F A186021 Continued fractions: %F A186021 G.f.: A(x)= 1 + 2*x/(G(0)-x) where G(k)= 1 - x*(k+1)/(1 - x/G(k+1)). %F A186021 G.f.: G(0)-1 where G(k) = 1-(x*k+1)/(x*k - 1 - x*(x*k - 1)/(x + (x*k + 1)/G(k+1))). %F A186021 G.f.: (G(0)-2)/x - 1 where G(k) = 1 + 1/(1 - x/(x + (1 - x*k)/G(k+1))). %F A186021 G.f.: (S-2)/x - 1 where S = 2*Sum_{k>=0} x^k/Product_{n=0..k-1}(1 - n*x). %F A186021 G.f.: 1/(1-x) - x/(G(0)-x^2+x) where G(k) =x^2 + x - 1 + k*(2*x-x^2) - x^2*k^2 + x*(x*k - 1)*(x*k + 2*x - 1)^2/G(k+1). %F A186021 E.g.f.: E(0) - 1 where E(k) = 1 + 1/(1 - 1/(1 + (k+1)/x*Bell(k)/Bell(k+1)/E(k+1))). (End) %F A186021 a(n) = A060719(n-1) + 1, and the inverse binomial transform of A060719. - _Gary W. Adamson_, May 20 2013 %F A186021 G.f. A(x) satisfies: A(x) = 1 + (x/(1 - x)) * (1 + A(x/(1 - x))). - _Ilya Gutkovskiy_, Jun 30 2020 %e A186021 a(4) = A060719(3) + 1 = 29 + 1 = 30. %p A186021 A186021List := proc(m) local A, P, n; A := [1,2]; P := [2]; %p A186021 for n from 1 to m - 2 do P := ListTools:-PartialSums([P[-1], op(P)]); %p A186021 A := [op(A), P[-1]] od; A end: A186021List(26); # _Peter Luschny_, Mar 24 2022 %t A186021 Prepend[Table[2 Sum[Binomial[n, j] BellB[j], {j, 0, n}], {n, 0, 25}], 1] (* _Geoffrey Critzer_, Aug 28 2014 *) %t A186021 With[{nmax = 50}, CoefficientList[Series[2*Exp[Exp[x] - 1] - 1, {x, 0, nmax}], x]*Range[0, nmax]!] (* _G. C. Greubel_, Jul 24 2017 *) %o A186021 (Magma) [Bell(n)*(2-0^n): n in [0..50]]; // _Vincenzo Librandi_, Apr 06 2011 %o A186021 (Python) %o A186021 from itertools import accumulate %o A186021 def A186021_list(size): %o A186021 if size < 1: return [] %o A186021 L, accu = [1], [2] %o A186021 for _ in range(size-1): %o A186021 accu = list(accumulate([accu[-1]] + accu)) %o A186021 L.append(accu[0]) %o A186021 return L %o A186021 print(A186021_list(26)) # _Peter Luschny_, Apr 25 2016 %o A186021 (PARI) x='x+O('x^50); Vec(serlaplace(2*exp(exp(x) - 1) -1)) \\ _G. C. Greubel_, Jul 24 2017 %Y A186021 Row sums of A186020 and A256894. %Y A186021 Main diagonal of A271466 (shifted) and A381682. %Y A186021 Cf. A000110, A000371, A003465. %K A186021 nonn,easy %O A186021 0,2 %A A186021 _Paul Barry_, Feb 10 2011