This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186082 #25 Sep 03 2025 20:09:58 %S A186082 1,2,3,5,10,13,18,31,49,98,116,232,281,397,678,1075,2150,3225,4300, %T A186082 5375,5772,6847,7922,8997,17994,19069 %N A186082 Numbers k such that log(A156668(k)*(1 + k mod 2))/k^2 is smaller than for any prior k. %H A186082 David Broadhurst, <a href="/A186082/b186082.txt">Table of n for n = 1..1000</a> %H A186082 Kevin Acres and David Broadhurst, <a href="https://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;5b5c3a3a.1102">Rational points on y^2 = x^3 + 10*x^2 + 5*x</a> %e A186082 [1, 0.6931471805599453094172321215] %e A186082 [2, 0.5994738181995926360154858945] %e A186082 [3, 0.5898075219334671955890478209] %e A186082 [5, 0.5866039232314788114510488867] %e A186082 [10, 0.5865963134453746145925657102] %e A186082 [13, 0.5864356249925781873672553233] %e A186082 [18, 0.5864232678262123920533476064] %o A186082 (PARI) %o A186082 T(k)={ %o A186082 local(P=ellpow(ellinit([0,10,0,5,0]),[-1,2],k),s,t); %o A186082 s=P[1]^2; %o A186082 t=abs(numerator(P[2]^4/s-80*s)); %o A186082 while(t%2==0,t=t/2;); %o A186082 t; %o A186082 } %o A186082 M(k)=1+k%2; %o A186082 V(k)=log(M(k)*T(k))/k^2; %o A186082 { %o A186082 lowest=1; %o A186082 for(i=1,20000, %o A186082 l=V(i); %o A186082 if(l<lowest, %o A186082 lowest=l; %o A186082 print([i,l]); %o A186082 ); %o A186082 ); %o A186082 } %Y A186082 Cf. A156668. %K A186082 nonn,changed %O A186082 1,2 %A A186082 _Kevin T. Acres_, Feb 12 2011