cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186088 Number of (n+2)X3 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

102251, 1252889, 11258613, 83378583, 531218757, 2985984444, 15084070635, 69482992431, 295278398390, 1168636004931, 4340861873151, 15229963644864, 50743091539034, 161283018943658, 490947611660031, 1436133677832325
Offset: 1

Views

Author

R. H. Hardin Feb 12 2011

Keywords

Comments

Column 1 of A186096

Examples

			Some solutions for 4X3
..0..0..1....0..0..0....0..0..0....0..0..0....0..0..0....0..0..1....0..0..0
..0..0..3....0..3..3....0..0..3....0..1..4....0..1..1....0..0..1....0..0..1
..1..4..2....1..2..2....0..2..3....0..3..3....2..0..2....0..1..2....2..3..3
..4..4..2....1..4..4....3..1..0....1..3..2....4..0..0....0..3..0....3..3..0
		

Formula

Empirical: a(n) = (1/295232799039604140847618609643520000000)*n^34
+ (1/36561337342365837875866081689600000)*n^33
+ (1151/78939251080108059050165403648000000)*n^32
+ (57793/15180625207713088278877962240000000)*n^31
+ (8146051/12732137270985170814542807040000000)*n^30
+ (15252793/195879034938233397146812416000000)*n^29
+ (917629/125082397789421070974976000000)*n^28
+ (40844936773/73173202706811326520360960000000)*n^27
+ (10326664514897/292692810827245306081443840000000)*n^26
+ (1699793021071/900593264083831711019827200000)*n^25
+ (21419403120091/247663147623053720530452480000)*n^24
+ (3257433593147959/952550567780975848194048000000)*n^23
+ (149148353528547551/1272577438379327417745408000000)*n^22
+ (888681424414566953/254515487675865483549081600000)*n^21
+ (11531836957656612161/127257743837932741774540800000)*n^20
+ (5909972330146165909/2879134475971328999424000000)*n^19
+ (185196564663366054480883/4554487674199698126667776000000)*n^18
+ (223744365124534317893/317054484803320440422400000)*n^17
+ (631124705896508562289697/58734343309815111588249600000)*n^16
+ (7215220158705833717523107/50233319936026082279424000000)*n^15
+ (44200951728497459126549888033/26246909666573627990999040000000)*n^14
+ (1394814879695359558279349521/80759722050995778433843200000)*n^13
+ (32548509299450082036607825951/211076546269648057270272000000)*n^12
+ (48337137666188129039919297713/40591643513393857167360000000)*n^11
+ (18053107623124660173941442743743/2286662584587853953761280000000)*n^10
+ (2266224377869928249871300899693/50814724101952310083584000000)*n^9
+ (902210285827865272553906095027/4234560341829359173632000000)*n^8
+ (57964514565563064206413856761/67861543939573063680000000)*n^7
+ (2023140467628393995969236886677/710661168478306805760000000)*n^6
+ (25417310330253175708558630751/3279974623746031411200000)*n^5
+ (61858293620765291251250539109/3728237822324655704064000)*n^4
+ (12364083190538430205351213/471396394434917952000)*n^3
+ (8255316109684330210707767/294877831150846944000)*n^2
+ (1418176238189177/80224196052)*n
+ 2040