cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186090 Number of (n+2)X5 0..4 arrays with each 3X3 subblock having rows and columns in lexicographically nondecreasing order.

Original entry on oeis.org

11258613, 280102672, 4527262140, 55707179395, 558643720724, 4754203179765, 35285910378578, 232998389350277, 1389861134920751, 7581135805604097, 38188894333159149, 179116588954318878, 787613147423182292
Offset: 1

Views

Author

R. H. Hardin Feb 12 2011

Keywords

Comments

Column 3 of A186096

Examples

			Some solutions for 4X5
..0..0..0..0..0....0..0..0..1..2....0..0..0..1..1....0..0..0..1..2
..0..0..0..1..4....0..0..0..1..3....0..0..0..2..4....0..0..0..1..3
..0..0..0..4..3....0..0..0..1..4....0..0..0..4..0....0..0..0..3..3
..0..0..0..4..3....0..0..0..4..2....0..0..2..0..2....0..0..2..1..2
		

Formula

Empirical: a(n) = (73/780558954307155499190634781246950872186880000000)*n^42
+ (13457/180824468179263822206324659748328387379200000000)*n^41
+ (3900581/135985880541316289057601878266019315712000000000)*n^40
+ (34573607/3547457753251729279763527259113547366400000000)*n^39
+ (783095609/261511308733300555880003612050037145600000000)*n^38
+ (157680394517/220220049459621520741055673305294438400000000)*n^37
+ (4449274379387/34719377167057446963679948494077952000000000)*n^36
+ (78266544045647/4463919921478814609615993377810022400000000)*n^35
+ (351711904372487/185996663394950608733999724075417600000000)*n^34
+ (6672186316510963/40397465352749453480687722876108800000000)*n^33
+ (227175899704566161/19027791651657351277135521644544000000000)*n^32
+ (1413399090272799163/1945063146613862574996075545886720000000)*n^31
+ (2425160040317086077469/64234141817611026166201043229081600000000)*n^30
+ (1308646465558482919369/772741555700583773427982474936320000000)*n^29
+ (8213920694956950635983/124087978011418962940598943744000000000)*n^28
+ (5617282592462587740731/2472065186946237152332244582400000000)*n^27
+ (1521762722497945153402541/22068569627876972486051135225856000000)*n^26
+ (1878543024001065125286721/1010003186630525056569846005760000000)*n^25
+ (19717317282559725840243293103257/440267964076145601096720147755827200000000)*n^24
+ (36446427572892822692407351649479/37737254063669622951147441236213760000000)*n^23
+ (638998422910875785524665678547/34182295347526832383285725757440000000)*n^22
+ (410339155805630961759651456959341/1262115520524067657229011412582400000000)*n^21
+ (1597892128488008319769676720915853731/314477117197246857926228676968448000000000)*n^20
+ (118015939736082965864789540542347989/1655142722090772936453835141939200000000)*n^19
+ (22520321279448444798605884585883924747/25102997951710056202883166319411200000000)*n^18
+ (208434692374593985301910711360962527/20636370256246849271643085209600000000)*n^17
+ (40155510721702241732533453141570195711/395530429911397944373159133184000000000)*n^16
+ (107825268730953277264995498539714242159/118659128973419383311947739955200000000)*n^15
+ (318616883175578368540913621780089270543/44116855643963616872390826393600000000)*n^14
+ (747073340688717248973589706042919081053/14705618547987872290796942131200000000)*n^13
+ (443493217956706208236819899328289622001969/1407846716873544832545413136384000000000)*n^12
+ (32621201841163616405254679822642326961/19042363199148873893680250880000000)*n^11
+ (113921405629950674287156063055479914539627/14039603215198566480525341491200000000)*n^10
+ (1144524508165891320553030705838759610107/34499024994611862078213980160000000)*n^9
+ (432497307915044598355384092794497612462427/3737394374416285058473181184000000000)*n^8
+ (61814920247335881381979777245139927327/182134228772723443395379200000000)*n^7
+ (163824786702020604320943990364873597119237371/199243608595444170038087349903360000000)*n^6
+ (9556363100363254083446664661866985861/5935805108544382776767462400000)*n^5
+ (2788041811480138681735984949313139707043/1129498914940159694093465702400000)*n^4
+ (27300487560154033333750602692383903/9743779459456174034622720000)*n^3
+ (15469108906282154365785469517369/7285083194795024114496000)*n^2
+ (5578947488502101228747/6258862563988320)*n
+ 42948