This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186102 #28 Sep 08 2022 08:45:55 %S A186102 3,2,3,11,5,19,7,103,101,97,11,197,13,229,109,281,17,79,19,233,167, %T A186102 101,23,113,607,127,233,349,29,821,31,163,307,173,631,1093,37,853,373, %U A186102 1597,41,223,43,1009,439,643,47,271,503,2111,983,769,53,1811,569,2423 %N A186102 Smallest prime p such that p == n (mod prime(n)). %C A186102 a(n) = n iff n is prime. %H A186102 Zak Seidov, <a href="/A186102/b186102.txt">Table of n, a(n) for n = 1..10000</a> %e A186102 Eighth prime is 19, and 103 is the smallest prime p such that p mod 19 is 8. Therefore a(8) = 103. %t A186102 k=200;Table[p=Prime[n];m=n;While[!PrimeQ[m],m=m+p];m,{n,k}]; (* For the first k terms. _Zak Seidov_, Dec 13 2013 *) %t A186102 Flatten[With[{prs=Prime[Range[500]]},Table[Select[prs,Mod[#,Prime[n]] == n&,1],{n,60}]]] (* _Harvey P. Dale_, Mar 30 2012 *) %o A186102 (Magma) Aux:=function(n); q:=NthPrime(n); p:=2; while p mod q ne n do p:=NextPrime(p); end while; return p; end function; [ Aux(n): n in [1..70] ]; // _Klaus Brockhaus_, Feb 12 2011 %o A186102 (Sage) def A186102(n): np = nth_prime(n); return next(p for p in Primes() if p % np == n) # [_D. S. McNeil_, Feb 13 2011] %o A186102 (Haskell) %o A186102 a186102 n = f a000040_list where %o A186102 f (q:qs) = if (q - n) `mod` (a000040 n) == 0 then q else f qs %o A186102 -- _Reinhard Zumkeller_, Aug 21 2015 %Y A186102 Cf. A061067, A061068, A064402, A076297, A076298, A076299, A076300. %Y A186102 Cf. A000040, A260416. %K A186102 nonn %O A186102 1,1 %A A186102 _Zak Seidov_, Feb 12 2011