cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186109 Numerator of the cumulative frequency of the dropping time in the Collatz iteration.

This page as a plain text file.
%I A186109 #11 Jan 15 2022 21:33:06
%S A186109 1,3,13,7,115,237,15,1935,7825,31473,31711,254649,15957,2050541,
%T A186109 8219801,16490635,33035745,132455435,530485275,1061920785,4253619813,
%U A186109 4256987887,34095896991,136471574881,273072139013,136638599097,2187167322891,4377196161075,4378797345767,35049397190341
%N A186109 Numerator of the cumulative frequency of the dropping time in the Collatz iteration.
%C A186109 The possible dropping times are in A020914. The denominators are in A186110. The frequency of the n-th dropping time is A186107(n)/A186108(n).
%C A186109 Riho Terras' classic paper about the Collatz problem shows the decimal values of 2(1-c(k)) in Table A, where c(k) is the cumulative frequency of dropping times <= k.
%H A186109 <a href="/index/3#3x1">Index entries for sequences related to 3x+1 (or Collatz) problem</a>
%H A186109 Riho Terras, <a href="http://matwbn.icm.edu.pl/ksiazki/aa/aa30/aa3034.pdf">A stopping time problem on the positive integers</a>, ACTA Arith. 30 (1976), 241-252.
%F A186109 a(n) = numerator of Sum_{k=1..n} A186009(k) / 2^A020914(k-1).
%e A186109 The cumulative frequencies are 1/2, 3/4, 13/16, 7/8, 115/128, 237/256, 15/16, 1935/2048, 7825/8192, ... .
%Y A186109 Cf. A126241 (dropping times).
%K A186109 nonn,frac
%O A186109 1,2
%A A186109 _T. D. Noe_, Feb 12 2011