This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186114 #27 Apr 26 2020 21:52:09 %S A186114 1,1,2,1,1,3,0,0,0,2,1,1,1,2,4,0,0,0,0,0,3,1,1,1,1,1,2,5,0,0,0,0,0,0, %T A186114 0,2,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,0,0,0,3,1,1,1,1,1,1,1,2,2,3,6,0,0, %U A186114 0,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,0,0,2,5,0,0,0,0,0,0,0,0,0,0,0,0,0,4,1,1,1,1,1,1,1,1,1,1,1,2,2,3,7 %N A186114 Triangle of regions and partitions of integers (see Comments lines for definition). %C A186114 Let r = T(n,k) be a record in the sequence. The consecutive records "r" are the natural numbers A000027. Consider the first n rows; the triangle T(n,k) has the property that the columns, without the zeros, from k..1, are also the partitions of r in juxtaposed reverse-lexicographical order, so k is also A000041(r), the number of partitions of r. Note that a record r is always the final term of a row if such row contains 1’s. The number of positive integer a(1)..r is A006128(r). The sums a(1)..r is A066186(r). Here the set of positive integers in every row (from 1 to n) is called a “region” of r. The number of regions of r equals the number of partitions of r. If T(n,1) = 1 then the row n is formed by the smallest parts, in nondecreasing order, of all partitions of T(n,n). %H A186114 Robert Price, <a href="/A186114/b186114.txt">Table of n, a(n) for n = 1..196878, rows 1-627.</a> %H A186114 Omar E. Pol, <a href="http://www.polprimos.com/imagenespub/polpar02.jpg">Illustration of the seven regions of 5</a> %F A186114 T(n,1) = A167392(n). %F A186114 T(n,k) = A141285(n), if k = n. %e A186114 Triangle begins: %e A186114 1, %e A186114 1, 2, %e A186114 1, 1, 3, %e A186114 0, 0, 0, 2, %e A186114 1, 1, 1, 2, 4, %e A186114 0, 0, 0, 0, 0, 3, %e A186114 1, 1, 1, 1, 1, 2, 5, %e A186114 0, 0, 0, 0, 0, 0, 0, 2, %e A186114 0, 0, 0, 0, 0, 0, 0, 2, 4, %e A186114 0, 0, 0, 0, 0, 0, 0, 0, 0, 3, %e A186114 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 6 %e A186114 ... %e A186114 The row n = 11 contains the 6th record in the sequence: a(66) = T(11,11) = 6, then consider the first 11 rows of triangle. Note that the columns, from k = 11..1, without the zeros, are also the 11 partitions of 6 in juxtaposed reverse-lexicographical order: [6], [3, 3], [4, 2], [2, 2, 2], [5, 1], [3, 2, 1], [4, 1, 1], [2, 2, 1, 1], [3, 1, 1, 1], [2, 1, 1, 1, 1], [1, 1, 1, 1, 1, 1]. See A026792. %t A186114 A206437 = Cases[Import["https://oeis.org/A206437/b206437.txt", %t A186114 "Table"], {_, _}][[All, 2]]; %t A186114 A194446 = Cases[Import["https://oeis.org/A194446/b194446.txt", %t A186114 "Table"], {_, _}][[All, 2]]; %t A186114 f[n_] := Module[{v}, %t A186114 v = Take[A206437, A194446[[n]]]; %t A186114 A206437 = Drop[A206437, A194446[[n]]]; %t A186114 Reverse[PadRight[v, n]]]; %t A186114 Table[f[n], {n, PartitionsP[20]}] // Flatten (* _Robert Price_, Apr 26 2020 *) %Y A186114 Mirror of triangle A193870. Column 1 gives A167392. Right diagonal gives A141285. %Y A186114 Cf. A000041, A135010, A138121, A183152, A186412, A187219, A194436-A194439, A194446-A194448, A206437. %K A186114 nonn,tabl %O A186114 1,3 %A A186114 _Omar E. Pol_, Aug 08 2011