A186121 Number of (n+1) X 3 binary arrays with every 2 X 2 subblock diagonal sum less antidiagonal sum equal to some horizontal or vertical neighbor 2 X 2 subblock diagonal sum less antidiagonal sum.
14, 38, 94, 254, 682, 1878, 5214, 14606, 41138, 116350, 330046, 938174, 2670826, 7611430, 21707790, 61943694, 176825074, 504902766, 1441965358, 4118707422, 11765461418, 33611411190, 96025298558, 274346613774, 783834214130
Offset: 1
Keywords
Examples
Some solutions for 5 X 3: ..0..1..1....0..0..1....1..0..0....0..0..1....0..0..1....0..1..1....0..0..1 ..1..1..1....0..0..1....1..1..1....1..1..1....1..0..0....1..1..0....1..1..1 ..1..0..0....1..0..0....0..1..1....1..1..0....0..0..1....1..1..1....1..1..0 ..0..0..1....0..0..0....0..0..0....1..1..1....0..0..1....0..0..1....1..1..0 ..0..0..1....0..1..1....1..0..0....0..0..1....0..0..1....0..0..1....0..1..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Crossrefs
Cf. A186128.
Formula
Empirical: a(n) = 5*a(n-1) - 3*a(n-2) - 13*a(n-3) + 6*a(n-4) + 14*a(n-5) + 6*a(n-6) + 8*a(n-7) - 16*a(n-8) - 16*a(n-9).
Empirical g.f.: 2*x*(7 - 16*x - 27*x^2 + 40*x^3 + 52*x^4 + 14*x^5 - 4*x^6 - 72*x^7 - 64*x^8) / ((1 - 2*x)*(1 - 3*x - 3*x^2 + 7*x^3 + 8*x^4 + 2*x^5 - 2*x^6 - 12*x^7 - 8*x^8)). - Colin Barker, Apr 17 2018
Comments