A186122 Number of (n+1)X4 binary arrays with every 2X2 subblock diagonal sum less antidiagonal sum equal to some horizontal or vertical neighbor 2X2 subblock diagonal sum less antidiagonal sum.
18, 94, 262, 946, 2978, 10502, 34678, 120290, 405274, 1395998, 4745006, 16291134, 55591062, 190569866, 651446994, 2231635906, 7634948674, 26146587758, 89488608966, 306421554338, 1048950425454, 3591569027638, 12295940315506
Offset: 1
Keywords
Examples
Some solutions for 3X4 ..1..0..0..0....1..1..0..0....1..0..0..1....1..0..0..0....0..1..0..0 ..1..0..0..0....1..1..1..1....0..0..0..0....1..0..0..0....0..0..0..1 ..0..0..1..1....0..0..1..1....0..1..1..0....1..0..0..0....1..0..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..200
Formula
Empirical: a(n)=7*a(n-1)-a(n-2)-83*a(n-3)+105*a(n-4)+366*a(n-5)-566*a(n-6)-920*a(n-7)+1225*a(n-8)+1920*a(n-9)-1210*a(n-10)-3435*a(n-11)-521*a(n-12)+4429*a(n-13)+4158*a(n-14)-3945*a(n-15)-6055*a(n-16)+1059*a(n-17)+4227*a(n-18)+1217*a(n-19)-275*a(n-20)-965*a(n-21)-1160*a(n-22)-245*a(n-23)+357*a(n-24)+391*a(n-25)+5*a(n-26)-292*a(n-27)-120*a(n-28)+80*a(n-29)+80*a(n-30)+64*a(n-31) for n>33
Comments