cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186128 T(n,k) = Number of (n+1) X (k+1) binary arrays with every 2 X 2 subblock diagonal sum less antidiagonal sum equal to some horizontal or vertical neighbor 2 X 2 subblock diagonal sum less antidiagonal sum.

This page as a plain text file.
%I A186128 #7 Sep 04 2022 22:11:12
%S A186128 0,14,14,18,38,18,50,94,94,50,74,254,262,254,74,182,682,946,946,682,
%T A186128 182,298,1878,2978,4254,2978,1878,298,678,5214,10502,17794,17794,
%U A186128 10502,5214,678,1186,14606,34678,79782,90054,79782,34678,14606,1186,2566,41138
%N A186128 T(n,k) = Number of (n+1) X (k+1) binary arrays with every 2 X 2 subblock diagonal sum less antidiagonal sum equal to some horizontal or vertical neighbor 2 X 2 subblock diagonal sum less antidiagonal sum.
%C A186128 Table starts
%C A186128 ....0.....14......18.......50........74.........182..........298...........678
%C A186128 ...14.....38......94......254.......682........1878.........5214.........14606
%C A186128 ...18.....94.....262......946......2978.......10502........34678........120290
%C A186128 ...50....254.....946.....4254.....17794.......79782.......350266.......1574348
%C A186128 ...74....682....2978....17794.....90054......539962......2915982......17129792
%C A186128 ..182...1878...10502....79782....539962.....4056794.....29491822.....220010616
%C A186128 ..298...5214...34678...350266...2915982....29491822....264173146....2630528360
%C A186128 ..678..14606..120290..1574348..17129792...220010616...2630528360...33067061342
%C A186128 .1186..41138..405274..7039308..95854320..1637583596..24515504568..411149162658
%C A186128 .2566.116350.1395998.31791832.556779864.12272724126.241032804442.5153688541776
%H A186128 R. H. Hardin, <a href="/A186128/b186128.txt">Table of n, a(n) for n = 1..179</a>
%e A186128 Some solutions for 4 X 3
%e A186128 ..1..0..0....0..0..1....1..1..0....0..1..0....1..0..0....0..0..1....1..0..1
%e A186128 ..1..0..0....0..0..1....0..1..1....1..1..1....0..0..1....0..0..1....0..0..0
%e A186128 ..0..0..0....1..0..0....0..1..1....1..0..1....1..0..0....1..0..0....0..1..0
%e A186128 ..0..1..1....1..0..0....1..1..0....1..0..1....0..0..1....0..0..1....0..1..0
%K A186128 nonn,tabl
%O A186128 1,2
%A A186128 _R. H. Hardin_, Feb 13 2011