A186130 Positions of the odd partitions of (2k+1) in reverse lexicographic order converge to this limiting sequence.
1, 4, 9, 12, 21, 24, 26, 30, 47, 50, 52, 59, 62, 67, 99, 102, 104, 110, 113, 116, 126, 129, 133, 139, 197, 200, 202, 208, 211, 214, 227, 231, 234, 238, 254, 256, 260, 265, 272, 375, 378, 380, 386, 389, 392, 404, 407, 411, 414, 418, 440, 443, 450, 452, 456, 461, 486, 489, 494, 500, 508, 686, 689, 691
Offset: 1
Keywords
Examples
The odd partitions of (2*4+1) occur at positions 1, 4, 9, 12, 19, 21, 25, and 30. For (2*5+1) they occur at 1, 4, 9, 12, 20, ..., so for k=5 only four terms have stabilized, giving a(1) = 1, a(2) = 4, a(3) = 9, and a(4) = 12.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
<
?EvenQ],1]],{n,39,39+2,2}];{{diffat}}=Position[Take[Last[it],Length[First[it] ] ] - First[it] , a /;(a!=0),1,1]; Take[First[it],diffat -1 ]