A186131 Positions of the odd partitions of (2k) in reverse lexicographic order converge to this limiting sequence.
2, 5, 7, 13, 16, 19, 31, 34, 38, 41, 45, 68, 71, 76, 79, 86, 88, 92, 97, 140, 143, 148, 151, 159, 162, 164, 168, 181, 184, 189, 195, 273, 276, 281, 284, 293, 296, 298, 302, 317, 319, 326, 329, 334, 353, 356, 360, 366, 373, 509, 512, 517, 520, 529, 532, 534, 538, 554, 557, 559, 566, 569, 574, 601
Offset: 1
Keywords
Examples
The odd partitions of (2*4) occur at positions 2, 5, 7, 14, 17 and 22. For (2*5) they occur at 2, 5, 7, 13, ... so for k=5 only the first three terms have stabilized, giving a(1) = 2, a(2) = 5, and a(3) = 7.
Links
- Alois P. Heinz, Table of n, a(n) for n = 1..10000
Programs
-
Mathematica
<
?EvenQ], 1]], {n, 36, 36+2, 2}]; {{diffat}}=Position[Take[Last[it], Length[First[it] ] ] - First[it] , a /; (a!=0), 1, 1]; Take[First[it], diffat -1 ]