A186158 Array associated with "the Mysterious B Sequence", by antidiagonals.
18, 5, 165, 3, 18, 1333, 2, 8, 56, 10353, 2, 5, 18, 165, 78958, 1, 3, 9, 38, 472, 596438, 1, 3, 6, 18, 80, 1333, 4479398, 1, 2, 5, 11, 32, 165, 3727, 33514643, 1, 2, 4, 8, 18, 56, 333, 10353, 250104748, 1, 2, 3, 6, 12, 28, 96, 668, 28635, 1862945616, 1, 2, 3, 5, 9, 18, 45, 165, 1333, 78958
Offset: 1
Examples
Northwest corner: 18 5 3 2 2 1 1 1 1 165 18 9 6 5 4 3 3 2 1333 56 18 9 6 5 4 3 3 10353 165 38 18 11 8 6 5 4 78958 472 80 32 18 12 9 7 6 596438 1333 165 56 28 18 12 9 8 4479388 3727 333 96 45 26 18 13 10 Column 1 continues with 33514643,250104748,1862945616. T(1,1)=18 because when (c,d)=(1,2), the only negative number in the sequence B is b(18).
Links
- Clark Kimberling, Unsolved Problems and Rewards
- Clark Kimberling, Partial sums of generating functions as polynomial sequences, The Fibonacci Quarterly 48 (2010) 327-334. (See Theorem 1.)
- Peter Kosinar, On The Mysterious B Sequence
Programs
-
Mathematica
B[0,c_,d_]:=c; B[k_,c_,d_]:=B[Mod[k,2],c,d]=c+2d*k-((c+d(-1+2k))^2)/(4B[Mod[k-1,2],c,d]); Table[Table[NestWhile[#1+1&,1,B[#1,c,d]>0&],{d,c+1,c+10}],{c,1,5}]//TableForm (* Peter J. C. Moses, Feb 08 2011 *)
Formula
Starting with A=(c,c+d,c+2*d,...), put b(0)=a(0) and for k>0, put U=(a(2*k-1))^2, V=a(2*k), W=4*b(k-1), b(k)=V-U/W.
For i>=1 and j>=1, put f(i,i+j)=(the index k for which b(k)<0). Then the array, T, is given by T(i,j)=f(i,i+j).
Comments