cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186219 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the triangular numbers and squares. Complement of A186220.

This page as a plain text file.
%I A186219 #13 Sep 08 2022 08:45:55
%S A186219 1,3,5,7,8,10,12,13,15,17,19,20,22,24,25,27,29,31,32,34,36,37,39,41,
%T A186219 43,44,46,48,49,51,53,54,56,58,60,61,63,65,66,68,70,72,73,75,77,78,80,
%U A186219 82,83,85,87,89,90,92,94,95,97,99,101,102,104,106,107,109,111,113,114,116,118,119,121,123,124,126,128,130,131,133,135,136,138,140,142,143,145,147,148,150,152,153,155,157,159,160,162,164,165,167,169,171
%N A186219 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the triangular numbers and squares.  Complement of A186220.
%C A186219 Suppose that f and g are strictly increasing functions for which (f(i)) and (g(j)) are integer sequences.  If 0<|d|<1, the sets F={f(i): i>=1} and G={g(j)+d: j>=1} are clearly disjoint.  Let f^=(inverse of f) and g^=(inverse of g).  When the numbers in F and G are jointly ranked, the rank of f(n) is a(n):=n+floor(g^(f(n))-d), and the rank of g(n)+d is b(n):=n+floor(f^(g(n))+d).  Therefore, the sequences a and b are a complementary pair.
%C A186219 Although the sequences (f(i)) and (g(j)) may not be disjoint, the sequences (f(i)) and (g(j)+d) are disjoint, and this observation enables two types of adjusted joint rankings:
%C A186219 (1) if 0<d<1, we call a and b the "adjusted joint rank sequences of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j)"; (2) if -1<d<0, we call a and b the "adjusted joint rank sequences of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j)".
%C A186219 Using f(i)=ui^2+vi+w and g(j)=xj^2+yj+z, we can carry out adjusted joint rankings of any pair of polygonal sequences (triangular, square, pentagonal, etc.)  In this case,
%C A186219   a(n)=n+floor((-y+sqrt(4x(un^2+vn+w-z-d)+y^2))/(2x)),
%C A186219   b(n)=n+floor((-v+sqrt(4u(xn^2+yn+z-w+d)+v^2)/(2u)),
%C A186219   where a(n) is the rank of un^2+vn+w and b(n) is the rank
%C A186219   of xn^2+yn+z+d, where d must be chosen small enough, in
%C A186219   absolute value, that the sets F and G are disjoint.
%C A186219 Example:  f=A000217 (triangular numbers) and g=A000290 (squares) yield adjusted rank sequences a=A186219 and b=A186220 for d=1/4 and a=A186221 and b=A186222 for d=-1/4.
%H A186219 G. C. Greubel, <a href="/A186219/b186219.txt">Table of n, a(n) for n = 1..10000</a>
%F A186219 a(n) = n + floor(sqrt((n^2+n)/2 - 1/4)), (A186219).
%F A186219 b(n) = n + floor((-1 + sqrt(8*n^2+3))/2), (A186220).
%e A186219 First, write
%e A186219 1..3...6..10..15...21..28..36..45...  (triangular)
%e A186219 1....4.. 9......16...25....36....49.. (square)
%e A186219 Replace each number by its rank, where ties are settled by ranking the triangular number before the square:
%e A186219 a=(1,3,5,7,8,10,12,13,...)
%e A186219 b=(2,4,6,9,11,14,16,18,...).
%t A186219 (* adjusted joint ranking of triangular numbers and squares, using general formula *)
%t A186219 d=1/4; u=1/2; v=1/2; w=0; x=1; y=0; z=0;
%t A186219 h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
%t A186219 a[n_]:=n+Floor[h[n]/(2x)]; (* rank of triangular n(n+1)/2 *)
%t A186219 k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
%t A186219 b[n_]:=n+Floor[k[n]/(2u)]; (* rank of square n^2 *)
%t A186219 Table[a[n],{n,1,100}] (* A186219 *)
%t A186219 Table[b[n],{n,1,100}] (* A186220 *)
%o A186219 (PARI) vector(100, n, n + floor(sqrt((n^2 + n)/2 - 1/4))) \\ _G. C. Greubel_, Aug 26 2018
%o A186219 (Magma) [n + Floor(Sqrt((n^2 + n)/2 - 1/4)): n in [1..100]]; // _G. C. Greubel_, Aug 26 2018
%Y A186219 Cf. A186145 (joint ranks of squares and cubes),
%Y A186219 A000217 (triangular numbers),
%Y A186219 A000290 (squares),
%Y A186219 A186220 (complement of A186119)
%Y A186219 A186221 ("after" instead of "before")
%Y A186219 A186222 (complement of A186221).
%K A186219 nonn
%O A186219 1,2
%A A186219 _Clark Kimberling_, Feb 15 2011