cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186221 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the triangular numbers and squares. Complement of A186222.

This page as a plain text file.
%I A186221 #22 Oct 18 2024 21:42:57
%S A186221 2,3,5,7,8,10,12,14,15,17,19,20,22,24,25,27,29,31,32,34,36,37,39,41,
%T A186221 43,44,46,48,49,51,53,54,56,58,60,61,63,65,66,68,70,72,73,75,77,78,80,
%U A186221 82,84,85,87,89,90,92,94,95,97,99,101,102,104,106,107,109,111,113,114,116,118,119,121,123,124,126,128,130,131,133,135,136,138,140,142,143,145,147,148,150,152,153,155,157,159,160,162,164,165,167,169,171
%N A186221 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the triangular numbers and squares.  Complement of A186222.
%C A186221 See A186219.
%H A186221 G. C. Greubel, <a href="/A186221/b186221.txt">Table of n, a(n) for n = 1..10000</a>
%F A186221 a(n) = n + floor(sqrt((n^2+n)/2 + 1/4)).
%F A186221 a(n) = A061288(n) - n for all n in Z. - _Michael Somos_, Aug 19 2018
%e A186221 First, write
%e A186221 1..3...6..10..15...21..28..36..45...  (triangular)
%e A186221 1....4...9......16...25....36....49.. (square)
%e A186221 Replace each number by its rank, where ties are settled by ranking the triangular number after the square:
%e A186221 a=(2,3,5,7,8,10,12,14,...)
%e A186221 b=(1,4,6,9,11,13,16,18,...).
%t A186221 (* adjusted joint ranking; general formula *)
%t A186221 d=-1/4; u=1/2; v=1/2; w=0; x=1; y=0; z=0;
%t A186221 h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
%t A186221 a[n_]:=n+Floor[h[n]/(2x)];
%t A186221 k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
%t A186221 b[n_]:=n+Floor[k[n]/(2u)];
%t A186221 Table[a[n],{n,1,100}] (* A186221 *)
%t A186221 Table[b[n],{n,1,100}] (* A186222 *)
%t A186221 a[ n_] := n + Floor[ Sqrt[ n (n + 1)/2]]; (* _Michael Somos_, Aug 19 2018 *)
%o A186221 (PARI) vector(120, n, n + floor(sqrt((n^2+n)/2 + 1/4))) \\ _G. C. Greubel_, Aug 18 2018
%o A186221 {a(n) = n + sqrtint( n * (n+1) \ 2)}; /* _Michael Somos_, Aug 19 2018 */
%o A186221 (Magma) [n + Floor(Sqrt((n^2+n)/2 + 1/4)): n in [1..120]]; // _G. C. Greubel_, Aug 18 2018
%Y A186221 Cf. A061288, A186219, A186220, A186222.
%K A186221 nonn,easy
%O A186221 1,1
%A A186221 _Clark Kimberling_, Feb 15 2011