cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186223 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the triangular numbers and pentagonal numbers. Complement of A186224.

This page as a plain text file.
%I A186223 #7 Sep 28 2019 22:25:02
%S A186223 1,3,5,6,8,9,11,13,14,16,17,19,20,22,24,25,27,28,30,31,33,35,36,38,39,
%T A186223 41,43,44,46,47,49,50,52,54,55,57,58,60,61,63,65,66,68,69,71,73,74,76,
%U A186223 77,79,80,82,84,85,87,88,90,91,93,95,96,98,99,101,102,104,106,107,109,110,112,114,115,117,118,120,121,123,125,126,128,129,131,132,134,136,137,139,140,142,143,145,147,148,150,151,153,155,156,158
%N A186223 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the triangular numbers and pentagonal numbers.  Complement of A186224.
%C A186223 See A186219 for a general description.
%e A186223 First, write
%e A186223 1..3...6..10....15...21.....28......36...45...  (triangular)
%e A186223 1....5.........12...........22......35........... (pentagonal)
%e A186223 Replace each number by its rank, where ties are settled by ranking the triangular number before the pentagonal:
%e A186223 a=(1,3,5,6,8,9,11,13,...)
%e A186223 b=(2,4,7,10,12,15,18,...).
%t A186223 d=1/2; u=1/2; v=1/2; w=0; x=3/2; y=-1/2; z=0;
%t A186223 (* triangular & pentagonal *)
%t A186223 h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2);
%t A186223 a[n_]:=n+Floor[h[n]/(2x)];
%t A186223 k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2);
%t A186223 b[n_]:=n+Floor[k[n]/(2u)];
%t A186223 Table[a[n],{n,1,100}]  (* A186223 *)
%t A186223 Table[b[n],{n,1,100}]  (* A186224 *)
%Y A186223 Cf. A186219, A186224, A186225, A186226,
%Y A186223 A000217 (triangular), A000326 (pentagonal).
%K A186223 nonn
%O A186223 1,2
%A A186223 _Clark Kimberling_, Feb 15 2011