This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186227 #7 Mar 30 2012 18:57:18 %S A186227 1,3,4,6,7,9,10,12,13,14,16,17,19,20,22,23,25,26,28,29,30,32,33,35,36, %T A186227 38,39,41,42,43,45,46,48,49,51,52,54,55,56,58,59,61,62,64,65,67,68,69, %U A186227 71,72,74,75,77,78,80,81,83,84,85,87,88,90,91,93,94,96,97,98,100,101,103,104,106,107,109,110,111,113,114,116,117,119,120,122,123,124,126,127,129,130,132,133,135,136,138,139,140,142,143,145 %N A186227 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) before g(j) when f(i)=g(j), where f and g are the triangular numbers and heptagonal numbers. Complement of A186228. %C A186227 See A186219 for a general discussion of adjusted joint rank sequences. %e A186227 First, write %e A186227 1..3..6..10..15..21..28..36..45... (triangular) %e A186227 1.......7......18......34.......55... (heptagonal) %e A186227 Then replace each number by its rank, where ties are settled by ranking the triangular number before the heptagonal: %e A186227 a=(1,3,4,6,7,9,10,12,...), A186227. %e A186227 b=(2,5,8,11,15,18,21,...), A186228. %t A186227 (* adjusted joint ranking; general formula *) %t A186227 d=1/2; u=1/2; v=1/2; w=0; x=5/2; y=-3/2; z=0; %t A186227 h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2); %t A186227 a[n_]:=n+Floor[h[n]/(2x)]; %t A186227 k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2); %t A186227 b[n_]:=n+Floor[k[n]/(2u)]; %t A186227 Table[a[n],{n,1,100}] (* A186227 *) %t A186227 Table[b[n],{n,1,100}] (* A186228 *) %Y A186227 Cf. A186219, A186228, A186237, A186238, %Y A186227 Cf. A000217 (triangular numbers) %Y A186227 Cf. A000566 (heptagonal numbers) %K A186227 nonn %O A186227 1,2 %A A186227 _Clark Kimberling_, Feb 16 2011