This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186230 #32 Sep 21 2018 22:11:22 %S A186230 0,0,0,0,1,0,0,0,1,0,0,1,2,2,0,0,0,0,0,1,0,0,1,2,2,4,2,0,0,0,1,0,2,0, %T A186230 3,0,0,1,0,1,3,0,4,3,0,0,0,1,0,0,0,2,0,2,0,0,1,2,2,4,2,6,4,6,4,0,0,0, %U A186230 0,0,1,0,2,0,0,0,3,0,0,1,2,2,4,2,6,4,6,4,10,4,0,0,0,1,0,2,0,0,0,2,0,4,0,5,0 %N A186230 Triangle T(n,k), n>=1, 1<=k<=n, read by rows: T(n,k) is the number of positive integers j<k such that j,k,n are pairwise coprime. %C A186230 T(n,k) = A000010(k) if n is prime and 1<k<n. %H A186230 Alois P. Heinz, <a href="/A186230/b186230.txt">Rows n = 1..250, flattened</a> %F A186230 T(n,k) = |{ j : 1 <= j < k and GCD(n,k) = GCD(n,j) = GCD(k,j) = 1 }|. %e A186230 T(n,1) = 0 because no positive integer j<1 can be found. %e A186230 T(n,k) = 0 if GCD(n,k)>1. %e A186230 T(7,5) = 4 because for j in {1,2,3,4} all conditions are satisfied. %e A186230 Triangle T(n,k) begins: %e A186230 0; %e A186230 0, 0; %e A186230 0, 1, 0; %e A186230 0, 0, 1, 0; %e A186230 0, 1, 2, 2, 0; %e A186230 0, 0, 0, 0, 1, 0; %e A186230 0, 1, 2, 2, 4, 2, 0; %p A186230 with(numtheory): %p A186230 T:= proc(n,k) local c, i, j, m; %p A186230 if k=1 or igcd(n, k)>1 then 0 %p A186230 elif isprime(n) then phi(k) %p A186230 else m:= n*k; %p A186230 i:= igcd(m, 2); %p A186230 c:= 0; %p A186230 for j to k-1 by i do %p A186230 if igcd(m, j)=1 then c:= c+1 fi %p A186230 od; c %p A186230 fi %p A186230 end: %p A186230 seq(seq(T(n, k), k=1..n), n=1..20); %t A186230 t[n_, k_] := Module[{c, i, j, m}, If[ k == 1 || GCD[n, k] > 1, 0, If[PrimeQ[n], EulerPhi[k], m = n*k; i = GCD[m, 2]; c = 0; For[j = 1, j <= k-1, j = j+i, If[GCD[m, j] == 1, c = c+1]]; c]]]; Table[Table[t[n, k], {k, 1, n}], {n, 1, 20}] // Flatten (* _Jean-François Alcover_, Dec 19 2013 *) %Y A186230 Row sums give: A185953. Column k=2 gives: A000035 for n>1. Lower diagonal gives: A057475(n-1) for n>2. Cf. A000010, A000040, A003989. %K A186230 nonn,tabl,look %O A186230 1,13 %A A186230 _Alois P. Heinz_, Feb 15 2011