cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186252 a(n)=Product{k=0..n-1, (3k+1)*A000108(k)}.

This page as a plain text file.
%I A186252 #10 Feb 10 2015 09:48:13
%S A186252 1,1,4,56,2800,509600,342451200,858867609600,8105992499404800,
%T A186252 289789231853721600000,39450746867638243737600000,
%U A186252 20541057076054410196318617600000,41055903763279774965226732643942400000,315984464183472044352469495097074620825600000
%N A186252 a(n)=Product{k=0..n-1, (3k+1)*A000108(k)}.
%C A186252 a(n) is the determinant of the symmetric matrix (if(j<=floor((i+j)/2), A000984(j+1), A000984(i+1)))_{0<=i,j<=n}.
%C A186252 Wolfram Alpha suggests that
%C A186252 a(n) = -A^(3/2)*3^(n+1)*2^(n(n-1)+23/24)*Pi^((1-2n)/4)*G(n+1/2)*Gamma(n+1/3) /(4*e^(1/8)*Gamma(-2/3)*G(n+2)) where G is Barnes G-function, and A is the Glaisher Kinkelin constant.
%F A186252 a(n) ~ A^(3/2) * 2^(n^2-n-7/24) * 3^n * exp(n/2-1/8) / (GAMMA(1/3) * Pi^(n/2) * n^(n/2+13/24)), where A = 1.2824271291... is the Glaisher-Kinkelin constant (see A074962). - _Vaclav Kotesovec_, Nov 14 2014
%t A186252 Table[Product[(3*k+1)*Binomial[2k,k]/(k+1),{k,0,n-1}],{n,0,10}] (* _Vaclav Kotesovec_, Nov 14 2014 *)
%Y A186252 Cf. A000108, A185149, A000984, A074962.
%K A186252 nonn,easy
%O A186252 0,3
%A A186252 _Paul Barry_, Feb 16 2011