This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186255 #16 Jan 12 2016 10:34:02 %S A186255 8,17,71,269,1013,4007,15923,63521,253949,1014317,4056893,16225589, %T A186255 64902359,259609439,1038437759,4153750883,16614561281,66458241569, %U A186255 265832966279,1063331407109,4253325628439,17013302513759,68053207705097,272212800371669,1088851201483883 %N A186255 a(n) = 3*b_3(n)+2, where b_3 lists the zeros of the sequence A261303: u(n+1)=abs(u(n)-gcd(u(n),3*n+2)), u(1)=1. %C A186255 For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=3 it appears a(n) is prime for n>=2. %C A186255 See A261303 for the sequence u relevant here (m=3). - _M. F. Hasler_, Aug 14 2015 %H A186255 B. Cloitre, <a href="http://arxiv.org/abs/1101.4274">10 conjectures in additive number theory</a>, preprint arxiv:2011.4274 %H A186255 M. F. Hasler, <a href="https://oeis.org/wiki/User:M._F._Hasler/Work_in_progress/Rowland-Cloitre_type_prime_generating_sequences">Rowland-CloƮtre type prime generating sequences</a>, OEIS Wiki, August 2015. %F A186255 We conjecture that a(n) is asymptotic to c*4^n with c=0.96... %F A186255 See the wiki link for a sketch of a proof that this is true. We can give more decimals of c = 0.967094... - _M. F. Hasler_, Aug 22 2015 %o A186255 (PARI) a=1; m=3; for(n=2, 10^7, a=abs(a-gcd(a, m*n-1)); if(a==0, print1(m*n+m-1, ", "))) %o A186255 (PARI) m=3; a=k=1; for(n=1, 25, while( a>D=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[, 1])), a-=D+gcd(a-D, N); k+=1+D); k+=a+1; print1(a=N, ", ")) \\ _M. F. Hasler_, Aug 22 2015 %Y A186255 Cf. A106108. %Y A186255 Cf. A261301 - A261310; A186253 - A186263. %K A186255 nonn %O A186255 1,1 %A A186255 _Benoit Cloitre_, Feb 16 2011 %E A186255 More terms from _M. F. Hasler_, Aug 22 2015