cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A186257 a(n) = 5*b_5(n)+4, where b_5 lists the indices of zeros of the sequence A261305: u(n) = abs(u(n-1)-gcd(u(n-1),5*n-1)), u(1) = 1.

This page as a plain text file.
%I A186257 #12 Jan 12 2016 10:36:51
%S A186257 14,89,479,2879,17099,99839,599009,3592859,21557099,129336149,
%T A186257 775914479,4655486369,27932918219,167597509319,1005582321329,
%U A186257 6033492323549,36200953941059,217205705087639,1303234230378959,7819405361540219
%N A186257 a(n) = 5*b_5(n)+4, where b_5 lists the indices of zeros of the sequence A261305: u(n) = abs(u(n-1)-gcd(u(n-1),5*n-1)), u(1) = 1.
%C A186257 For any fixed integer m>=1 define u(1)=1 and u(n)=abs(u(n-1)-gcd(u(n-1),m*n-1)). Then (b_m(k))_{k>=1} is the sequence of integers such that u(b_m(k))=0 and we conjecture that for k large enough m*b_m(k)+m-1 is a prime number. Here for m=5 it appears a(n) is prime for n>=2.
%C A186257 See A261305 for the sequence u relevant here (m=5). - _M. F. Hasler_, Aug 14 2015
%H A186257 B. Cloitre, <a href="http://arxiv.org/abs/1101.4274">10 conjectures in additive number theory</a>, preprint arxiv:2011.4274 (2011).
%H A186257 M. F. Hasler, <a href="https://oeis.org/wiki/User:M._F._Hasler/Work_in_progress/Rowland-Cloitre_type_prime_generating_sequences">Rowland-CloƮtre type prime generating sequences</a>, OEIS Wiki, August 2015.
%F A186257 We conjecture that a(n) is asymptotic to c*6^n with c>0.
%F A186257 See the wiki link for a sketch of a proof of this conjecture. More precisely we find c = 1.15917467761... - _M. F. Hasler_, Aug 22 2015
%o A186257 (PARI) a=1; m=5; for(n=2, 1e7, a=abs(a-gcd(a, m*n-1)); if(a==0, print1(m*n+m-1, ", ")))
%o A186257 (PARI) m=5; a=k=1; for(n=1, 25, while( a>D=vecmin(apply(p->a%p, factor(N=m*(k+a)+m-1)[, 1])), a-=D+gcd(a-D, N); k+=1+D); k+=a+1; print1(a=N, ", ")) \\ _M. F. Hasler_, Aug 22 2015
%Y A186257 Cf. A106108.
%Y A186257 Cf. A261301 - A261310; A186253 - A186263.
%K A186257 nonn
%O A186257 1,1
%A A186257 _Benoit Cloitre_, Feb 16 2011
%E A186257 Edited by _M. F. Hasler_, Aug 14 2015
%E A186257 More terms from _M. F. Hasler_, Aug 22 2015