This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186264 #20 Feb 08 2021 07:47:21 %S A186264 1,3,15,98,756,6534,61347,613470,6447012,70526404,797490876, %T A186264 9271926888,110380082000,1341117996300,16586474042475,208360804638150, %U A186264 2653858669601700,34220809160653500,446174168961282300,5875592302944678600,78078028942687784400 %N A186264 Expansion of 3F2( 1, 3/2, 3/2; 3, 4;16 x). %C A186264 Combinatorial interpretation welcome. %H A186264 Vincenzo Librandi, <a href="/A186264/b186264.txt">Table of n, a(n) for n = 0..200</a> %F A186264 G.f. is equivalent to -3*( 1+2*x -2F1(-1/2,-1/2;2;16*x) ) /(4*x^2). %F A186264 a(n) = 3/((n+3)*(n+2)^2)*(2*n+2)!^2/(n+1)!^4 = 3/(n+3)* Catalan(n+1)^2. - _Peter Bala_, Mar 28 2018 %F A186264 D-finite with recurrence (n+3)*(n+2)*a(n) -4*(2*n+1)^2*a(n-1)=0. - _R. J. Mathar_, Feb 08 2021 %p A186264 seq(3/((n+3)*(n+2)^2)*binomial(2*n+2,n+1)^2, n = 0..20); # _Peter Bala_, Mar 28 2018 %t A186264 CoefficientList[Series[HypergeometricPFQ[{1, 3/2, 3/2}, {3, 4}, 16*x], {x, 0, 20}], %t A186264 x] %Y A186264 Cf. A186262, A000108, A001246. %K A186264 nonn,easy %O A186264 0,2 %A A186264 _Olivier Gérard_, Feb 16 2011