This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186266 #33 Feb 05 2025 15:07:55 %S A186266 1,3,18,140,1260,12474,132132,1472328,17065620,204155380,2506399896, %T A186266 31443925968,401783498480,5215458874500,68633685693000, %U A186266 914099013896400,12304253831789700,167193096184907100,2291164651422801000,31637804708163654000,439903041116118980400 %N A186266 Expansion of 2F1( 1/2, 3/2; 4; 16*x ). %C A186266 Combinatorial interpretation welcome. %C A186266 Could involve planar maps, lattice walks, and interpretations of Catalan numbers. %H A186266 Indranil Ghosh, <a href="/A186266/b186266.txt">Table of n, a(n) for n = 0..800</a> %H A186266 H. Franzen and T. Weist, <a href="https://arxiv.org/abs/1608.03419">The Value of the Kac Polynomial at One</a>, arXiv preprint arXiv:1608.03419 [math.RT], 2016. %F A186266 a(n) = 3*A000108(n)*A000108(n+1)*(n+1)/(n+3). - _David Scambler_, Aug 18 2012 %F A186266 D-finite with recurrence n*(n+3)*a(n) -4*(2*n-1)*(2*n+1)*a(n-1)=0. - _R. J. Mathar_, Jun 17 2016 %t A186266 CoefficientList[ %t A186266 Series[HypergeometricPFQ[{1/2, 3/2}, {4}, 16*x], {x, 0, 20}], x] %t A186266 Table[3 CatalanNumber[n] CatalanNumber[n+1] * (n+1) / (n+3), {n, 0, 20}] (* _Indranil Ghosh_, Mar 05 2017 *) %o A186266 (PARI) %o A186266 c(n) = binomial(2*n,n) / (n+1); %o A186266 a(n) = 3 * c(n) * c(n+1) *(n+1) / (n+3); \\ _Indranil Ghosh_, Mar 05 2017 %o A186266 (Python) %o A186266 import math %o A186266 f=math.factorial %o A186266 def C(n,r): return f(n) / f(r) / f(n-r) %o A186266 def Catalan(n): return C(2*n, n) / (n+1) %o A186266 def A186266(n): return 3 * Catalan(n) * Catalan(n+1) * (n+1) / (n+3) # _Indranil Ghosh_, Mar 05 2017 %Y A186266 Formula close to A000257, A000888, A172392. %Y A186266 Cf. A000108. %K A186266 nonn,easy %O A186266 0,2 %A A186266 _Olivier Gérard_, Feb 16 2011