A186317 Adjusted joint rank sequence of (f(i)) and (g(j)) with f(i) after g(j) when f(i)=g(j), where f and g are the squares and hexagonal numbers. Complement of A186318.
2, 3, 5, 7, 8, 10, 12, 13, 15, 17, 19, 20, 22, 24, 25, 27, 29, 30, 32, 34, 36, 37, 39, 41, 42, 44, 46, 48, 49, 51, 53, 54, 56, 58, 60, 61, 63, 65, 66, 68, 70, 71, 73, 75, 77, 78, 80, 82, 83, 85, 87, 89, 90, 92, 94, 95, 97, 99, 100, 102, 104, 106, 107, 109, 111, 112, 114, 116, 118, 119, 121, 123, 124, 126, 128, 129, 131, 133, 135, 136, 138, 140, 141, 143, 145, 147, 148, 150, 152, 153, 155, 157, 159, 160, 162, 164, 165, 167, 169, 170
Offset: 1
Keywords
Examples
First, write 1..4...9...16..25....36....49. (squares) 1....6...15.......28....45.... (hexagonals) Replace each number by its rank, where ties are settled by ranking the square number after the hexagonal: a=(2,3,5,7,8,10,12,13,...)=A186317. b=(1,4,6,9,11,14,16,18,...)=A186318.
Programs
-
Mathematica
(* adjusted joint ranking; general formula *) d=-1/2; u=1; v=0; w=0; x=2; y=-1; z=0; h[n_]:=-y+(4x(u*n^2+v*n+w-z-d)+y^2)^(1/2); a[n_]:=n+Floor[h[n]/(2x)]; k[n_]:=-v+(4u(x*n^2+y*n+z-w+d)+v^2)^(1/2); b[n_]:=n+Floor[k[n]/(2u)]; Table[a[n], {n, 1, 100}] (* A186317 *) Table[b[n], {n, 1, 100}] (* A186318 *)