cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A186334 A transform of the Catalan numbers.

Original entry on oeis.org

1, 1, 3, 5, 12, 24, 56, 123, 291, 677, 1637, 3954, 9757, 24171, 60648, 152929, 388822, 993216, 2551808, 6582899, 17055507, 44341141, 115671498, 302627130, 793951897, 2088103609, 5504504961, 14541271283, 38489869502, 102066761622, 271122837895
Offset: 0

Views

Author

Paul Barry, Feb 18 2011

Keywords

Comments

Hankel transform is A094967(n+1) (F(2n+1) repeated).

Crossrefs

Cf. A186335.

Programs

  • Mathematica
    Table[Sum[Sum[Binomial[k-j,n-k-j] * Binomial[k,j] * If[n-k-j>=0, CatalanNumber[n-k-j], 0], {j,0,n}], {k,0,n}], {n,0,30}] (* Vaclav Kotesovec, Oct 30 2017 *)

Formula

a(n)=sum{k=0..n, sum{j=0..n, binomial(k-j,n-k-j)*binomial(k,j)*if(n-k-j>=0, A000108(n-k-j),0)}}
Conjecture: (n+2)*a(n) +2*(-n-1)*a(n-1) +(-5*n+4)*a(n-2) +2*(3*n-4)*a(n-3) +5*(n-2)*a(n-4)=0. - R. J. Mathar, Nov 07 2014
a(n) ~ 21^(1/4) * ((1+sqrt(21))/2)^(n + 5/2) / (8 * sqrt(Pi) * n^(3/2)). - Vaclav Kotesovec, Oct 30 2017
Showing 1-1 of 1 results.