This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A186336 #18 Mar 26 2019 17:19:52 %S A186336 0,0,0,0,1,0,1,0,0,1,2,0,0,0,1,2,0,0,0,2,0,1,1,0,1,2,1,0,0,2,0,0,0,2, %T A186336 1,1,1,0,1,3,0,0,0,2,0,0,1,1,1,1,1,2,0,0,1,1,0,1,3,1,1,0,1,0,0,1,0,1, %U A186336 1,3,0,0,1,2,1,1,0,2,0,1,0,0,2,1,1,2,1,1,0,0,0,2,0,2,2,2,0,2,0,0,1,1,1,0,0,0,3,2,0,1,0,1,2,0,0,2,1,0,2,1,1 %N A186336 Number of ways of representing n as the sum of one or more consecutive semiprimes. %H A186336 Alois P. Heinz, <a href="/A186336/b186336.txt">Table of n, a(n) for n = 0..10000</a> %e A186336 a(4) = 1: 4 = A001358(1) is the first semiprime. %e A186336 a(10) = 2: 10 = A001358(1)+A001358(2) = 4+6 = A001358(4) = 10. %e A186336 a(39) = 3: 39 = 6+9+10+14 = 10+14+15 = 39. %p A186336 b:= proc(n) option remember; local k; %p A186336 if n=0 then 0 %p A186336 else for k from b(n-1)+1 %p A186336 while isprime(k) or 2<>add(i[2], i=ifactors(k)[2]) %p A186336 do od; k %p A186336 fi %p A186336 end: %p A186336 pis:= proc(n) option remember; local k; %p A186336 if n<4 then 0 %p A186336 elif n=4 then 1 %p A186336 else k:= pis(n-1); %p A186336 k +`if`(b(k+1)=n, 1 ,0) %p A186336 fi %p A186336 end: %p A186336 ssp:= proc(i,j) option remember; %p A186336 b(j) + `if`(i=j, 0, ssp(i, j-1)) %p A186336 end: %p A186336 a:= proc(n) option remember; local i, j, cnt, s; %p A186336 cnt:= 0; %p A186336 j:= pis(n); %p A186336 i:= j; %p A186336 while i>0 do %p A186336 s:= ssp(i,j); %p A186336 if s<n then i:= i-1 %p A186336 elif s>n then j:= j-1 %p A186336 else cnt:= cnt+1; %p A186336 i, j:= i-1, j-1 %p A186336 fi %p A186336 od; cnt %p A186336 end: %p A186336 seq(a(n), n=0..200); %t A186336 nmax = 120; %t A186336 sp = Select[Range[nmax], PrimeOmega[#] == 2&]; %t A186336 lsp = Length[sp]; Clear[a]; a[_] = 0; %t A186336 Do[n = Total[sp[[i ;; j]]]; a[n] = a[n]+1, {i, 1, lsp}, {j, i, lsp}]; %t A186336 Table[a[n], {n, 0, nmax}] (* _Jean-François Alcover_, Mar 13 2019 *) %o A186336 (Haskell) %o A186336 a186336 n = f $ takeWhile (<= n) a001358_list where %o A186336 f [] = 0 %o A186336 f (sp:sps) = g sp sps + f sps %o A186336 g spSum [] = fromEnum (spSum == n) %o A186336 g spSum (sp:sps) | spSum < n = g (sp + spSum) sps %o A186336 | spSum == n = 1 %o A186336 | otherwise = 0 %o A186336 -- _Reinhard Zumkeller_, Feb 28 2011 %Y A186336 Cf. A001358, A112020, A186337. %K A186336 nonn %O A186336 0,11 %A A186336 _Alois P. Heinz_, Feb 18 2011